Table of Contents

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thyroid Gland</td>
<td>1</td>
</tr>
<tr>
<td>Thyroid Disorders</td>
<td>9</td>
</tr>
<tr>
<td>Thyroid Cancer</td>
<td>17</td>
</tr>
<tr>
<td>Adrenal Glands</td>
<td>20</td>
</tr>
<tr>
<td>CAH</td>
<td>25</td>
</tr>
<tr>
<td>Adrenal Disorders</td>
<td>30</td>
</tr>
<tr>
<td>Endocrine Pancreas</td>
<td>39</td>
</tr>
<tr>
<td>Diabetes</td>
<td>46</td>
</tr>
<tr>
<td>Insulin</td>
<td>55</td>
</tr>
<tr>
<td>Treatment of Diabetes</td>
<td>59</td>
</tr>
<tr>
<td>Reproductive Hormones</td>
<td>65</td>
</tr>
<tr>
<td>Male Reproductive Hormones</td>
<td>69</td>
</tr>
<tr>
<td>Female Reproductive Hormones</td>
<td>77</td>
</tr>
<tr>
<td>Menstrual Cycle</td>
<td>81</td>
</tr>
<tr>
<td>Pituitary Gland</td>
<td>88</td>
</tr>
<tr>
<td>Parathyroid Gland</td>
<td>96</td>
</tr>
<tr>
<td>MEN Syndromes</td>
<td>104</td>
</tr>
<tr>
<td>Signaling Pathways</td>
<td>107</td>
</tr>
</tbody>
</table>
Thyroid Embryology

- Forms from floor of pharynx (epithelial cells)

24-28 Day Old Embryo

Thyroid Anatomy

- Two lobes (left, right)
- Isthmus: thin band of tissue between lobes
- Sometimes pyramidal lobe above isthmus

- Blood supply: superior and inferior thyroid arteries
- Superior thyroid: 1st branch external carotid artery
- Inferior thyroid: Thyrocervical trunk (off subclavian)

Thyroid Gland

Jason Ryan, MD, MPH

Thyroid Anatomy

- Foramen Cecum
- (end of median sulcus)

- Descends into neck
- Initially maintains connection to tongue
- Thyroglossal duct
- Disappears later in development
- Two remnants of duct in child/adult
- Foramen cecum in tongue
- Pyramidal lobe of thyroid

Thyroid Anatomy

- Forms from floor of pharynx (epithelial cells)

24-28 Day Old Embryo

- Blood supply: superior and inferior thyroid arteries
- Superior thyroid: 1st branch external carotid artery
- Inferior thyroid: Thyrocervical trunk (off subclavian)

- Two lobes (left, right)
- Isthmus: thin band of tissue between lobes
- Sometimes pyramidal lobe above isthmus

- Descends into neck
- Initially maintains connection to tongue
- Thyroglossal duct
- Disappears later in development
- Two remnants of duct in child/adult
- Foramen cecum in tongue
- Pyramidal lobe of thyroid
Thyroglobulin
- Large protein
- Produced by thyroid follicular cells
- Contains numerous tyrosine molecules

Thyroid Hormones
- Two hormones: T3 and T4
- Synthesized from tyrosine and iodine

Thyroid Histology
- Thyroid gland contains “follicles”
- Filled with colloid (protein material)
- Single layer of epithelial cells lines each follicle
- “Follicular cells”
- Hormone synthesized by follicular cells

Ectopic Thyroid
- Functioning thyroid tissue outside of gland
- Most common location is base of tongue
- Presents as a mass in the tongue
- Commonly detected during increased demand for hormones
- Puberty and pregnancy
- May be the only functioning thyroid tissue
- May under-produce thyroid hormone → hypothyroidism
- ↑ TSH → growth of ectopic tissue

Thyroglobulin
- Large protein
- Produced by thyroid follicular cells
- Contains numerous tyrosine molecules
Iodine

- **Iodine** = I (chemical element, atomic number 53)
- **Iodide** = iodide bound to another atom
 - "Iodide salt" with negative charge (I\(^{-}\))
 - Potassium iodide = KI
 - Plasma iodine exists as iodide salt
- For thyroid hormone, iodide in our diet needs to be:
 - Taken up by follicular cells
 - Oxidized to I\(_2\) (undergo "oxidation")
 - Added to organic/carbon structures ("organification")
Amiodarone
- Class III antiarrhythmic drug
- Commonly used in atrial fibrillation
- Contains iodine
- Can cause hypothyroidism via excess iodine
- Wolff-Chaikoff Effect

Wolff-Chaikoff Effect
- Excessive iodide in diet could lead to hyperthyroidism
- Thyroid protects itself via Wolff-Chaikoff Effect
- Organification inhibited by ↑ iodide
 - Less synthesis of MIT/DIT

Thyroid Hormones
- T4 is major hormone produced by thyroid gland
 - >90% of thyroid hormone produced is T4
 - T3 more potent hormone
 - T4 is a "prohormone" for T3
 - 5' deiodinase converts T4 → T3
 - Most conversion occurs in peripheral tissues

Hormone Synthesis

Hyperthyroid Medications
- Propylthiouracil (PTU)
 - Inhibits TPO: ↓ T3/T4 from thyroid gland
 - Inhibits 5'-deiodinase: ↓ T4 to T3 conversion peripherally
- Methimazole
 - Inhibits TPO
- Propranolol
 - Beta blocker
 - Weak inhibitor of 5'-deiodinase
 - Excellent drug in thyrotoxicosis
 - Blocks catecholamines and T4-T3 conversion

PTU and Methimazole are both "thioamides"

Hyperthyroidism
- Excessive T3/T4 in plasma
- Adaptive mechanism of peripheral tissues

Thyroid Peroxidase
- Multifunctional enzyme
- Catalyzes:
 - Oxidation of iodide
 - Organification of iodine into MIT/DIT
 - Coupling of MIT/DIT into T3/T4
- TPO antibodies common in autoimmune thyroid disease

Iodide
– thyroglobulin
– TPO
– MIT/DIT
– T3
– T4

TPO
Thyroid Peroxidase
- Multifunctional enzyme
- Catalyzes:
 - Oxidation of iodide
 - Organification of iodine into MIT/DIT
 - Coupling of MIT/DIT into T3/T4
- TPO antibodies common in autoimmune thyroid disease
Thyroid Hormone Receptor
- Family of nuclear receptors
- Hormone-activated transcription factors
- Modulate gene expression

TBG
- Thyroxine-Binding Globulin
 - Most plasma thyroid hormone is T4
 - Thyroid hormones poorly soluble in water
 - Most T4 is bound to TBG
 - Some with transthyretin and albumin
 - TBG present in small amount but has high affinity
 - TBG produced in liver
 - Key point:
 - Less TBG → less available T4/T3 to tissues

Radioactive Iodine
- I\(^{131}\) is an isotope of iodine
 - Has 53 protons like elemental iodine
 - Extra neutrons
 - Emits radiation (\(\beta\)-decay)
 - Exposure → radioactive iodine in thyroid gland
 - Competes with elemental iodine for uptake
 - Will concentrate in thyroid gland
 - Small dose: Used for imaging
 - Large dose: Destroys thyroid tissue
 - Used as therapy for hyperthyroidism

TBG
- Thyroxine-Binding Globulin
 - Estrogen raises TBG levels
 - Modifies TBG molecules
 - Slows clearance from plasma
 - Pregnancy, OCP users
 - Will raise total T4 levels
 - Liver failure lowers TBG levels
 - Less production of protein
 - Can lower total T4 levels

Amiodarone
- Mimics T4
 - Inhibits 5’-deiodinase
 - ↑T3 → ↑TSH from pituitary gland
 - TSH rises after start of therapy then normalizes

Thyroid Hormone Receptor
- Family of nuclear receptors
- Hormone-activated transcription factors
- Modulate gene expression

Radioactive Iodine
- I\(^{131}\) is an isotope of iodine
 - Has 53 protons like elemental iodine
 - Extra neutrons
 - Emits radiation (\(\beta\)-decay)
 - Exposure → radioactive iodine in thyroid gland
 - Competes with elemental iodine for uptake
 - Will concentrate in thyroid gland
 - Small dose: Used for imaging
 - Large dose: Destroys thyroid tissue
 - Used as therapy for hyperthyroidism

TBG
- Thyroxine-Binding Globulin
 - Estrogen raises TBG levels
 - Modifies TBG molecules
 - Slows clearance from plasma
 - Pregnancy, OCP users
 - Will raise total T4 levels
 - Liver failure lowers TBG levels
 - Less production of protein
 - Can lower total T4 levels

Amiodarone
- Mimics T4
 - Inhibits 5’-deiodinase
 - ↑T3 → ↑TSH from pituitary gland
 - TSH rises after start of therapy then normalizes

TBG
- Thyroxine-Binding Globulin
 - Most plasma thyroid hormone is T4
 - Thyroid hormones poorly soluble in water
 - Most T4 is bound to TBG
 - Some with transthyretin and albumin
 - TBG present in small amount but has high affinity
 - TBG produced in liver
 - Key point:
 - Less TBG → less available T4/T3 to tissues
Effects of Thyroid Hormone

- Major regulator of **metabolic activity** and **growth**
- Glucose, lipid metabolism
- Cardiac function
- Bone growth
- CNS development

Thyroid Hormone

Metabolic Effects

- ↑ Carbohydrate Metabolism
- ↑ glycogenolysis, gluconeogenesis
- ↑ Fat Metabolism
- ↑ lipolysis
- ↑ concentrations of cholesterol, triglycerides
- ↑ low-density lipoprotein receptors in liver (↓ LDL)
- ↑ cholesterol secretion in bile
- Hypothyroid patients: ↑ cholesterol
- Hyperthyroid patients: **hyperglycemia**

Cardiac Effects

- ↑ CO/HR/SV/contractility
- ↑ β1 receptors in heart
- Hyperthyroid patients: **Tachycardia**

Metabolic Effects

- ↑ basal metabolic rate
- Basal rate of energy use per time
- Amount of energy burned if you slept all day
- ↑ Na/K ATPase pumps
 - More pumps = more ATP consumed
 - ↑ oxygen demand to replenish ATP
 - ↑ respiratory rate
 - ↑ body temperature
- Hyperthyroid patients: **weight loss**

CNS and Bone effects

- TH required for normal bone growth/CNS maturation
- Childhood hypothyroidism → **cretinism**
- Stunted growth
- Intellectual disability
- Causes
 - Iodine deficiency
 - Thyroid dysgenesis
 - Inborn errors of hormone synthesis (dys hormonogenesis)
 - TPO most common
- Most common **treatable** cause intellectual disability
- Most babies appear normal
- Maternal T3/T4 crosses placenta
- Newborn screening programs
 - Measure T4 or TSH from heel-stick blood specimens
Thyroid Hormone

- Intellectual disability
- Coarse facial features
- Short stature
- Umbilical hernia
- Enlarged tongue

Thyroid Hormone Regulation

- Serum T4/T3 level sensed by hypothalamus
- Releases thyroid stimulating hormone (TSH)

- TSH (thyrotropin) released by anterior pituitary
- Binds to receptors on follicular cells
- Activates cAMP/PKA 2nd messenger system
- ↑ T3/T4 release
 - ↑ rate of proteolysis of thyroglobulin
 - Leads to rapid release of more T3/T4
 - Also stimulates thyroid cell growth, TG synthesis

Pregnancy

- Multiple effects on thyroid hormone production
 - Rise in total plasma T4/T3 levels
 - Rise in TBG levels (estrogen)
 - hCG stimulates thyroid (same alpha unit as TSH)
 - Raises free T4 → lower TSH

Thyroid Panel

- Four standard measurements to assess thyroid

<table>
<thead>
<tr>
<th>Test</th>
<th>Normal Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSH</td>
<td>0.4 to 5.0 mIU/L</td>
</tr>
<tr>
<td>Total T4</td>
<td>60 to 145 nmol/L</td>
</tr>
<tr>
<td>Total T3</td>
<td>1.1 to 3 nmol/L</td>
</tr>
<tr>
<td>Free T4</td>
<td>0.01-0.03 nmol/L</td>
</tr>
</tbody>
</table>

Note:
- T4 = T3
- Total T4 ↔ Free T4 (most bound to TBG)

Calcitonin

- Hormone produced by thyroid
- Synthesized by parafollicular cells (C-cells)
Calcitonin

- Lowers serum **calcium**
 - Suppresses resorption of bone; inhibits osteoclasts
 - Inhibits renal reabsorption of calcium, phosphorus
 - Increased calcium in urine
- Probably minor role in calcium handling in humans
- Used as pharmacologic therapy for **hypercalcemia**
Myxedema
Thyroid dermopathy

- **Non-pitting** edema of the skin from hypothyroidism
- Hyaluronic acid deposits in dermis
- Draws water out → swelling
- Usually facial/periorbital swelling
- Pretibial myxedema
- Special form of myxedema over shin
- Seen in Graves' disease (hyperthyroidism)
- Myxedema coma = coma from hypothyroidism
Hypothyroid Myopathy
- Muscle symptoms common in hypothyroid
- Weakness, cramps, myalgias
- ↑ serum creatine kinase (CK) common (up to 90%)

Thyroid Replacement
- Levothyroxine (Synthroid): synthetic T4
- Liothyronine (Cytomel): synthetic T3
- Levothyroxine preferred
 - T3 absorbed from intestines rapidly
 - Can cause mild hyperthyroidism symptoms
 - Tachycardia, tremor
 - Also, T4 converted to T3
- Titrate dose until TSH is normal

Hypothyroidism
- Metabolism SPEEDS UP
- Hyperactivity
- Heat intolerance
- Weight loss with increased appetite
- Diarrhea
- Hyperreflexia
- Warm, moist skin
- Fine hair
- Tachycardia (atrial fibrillation)

Thyroid Storm
- Life-threatening hyperthyroidism (thyrotoxicosis)
- Usually precipitated by acute event
 - Patient with pre-existing hyperthyroid disease
 - Graves’ or toxic multinodular goiter
 - Surgery, trauma, infection
 - Massive catecholamine surge
 - Fever, delirium
 - Tachycardia with death from arrhythmia
 - Hyperglycemia (catecholamines/thyroid hormone)
 - Hypercalcemia (bone turnover)

Goiter
- Enlarged thyroid
- High TSH, inability to produce T3/T4
- Thyroid stimulating antibodies (Graves’)

Hyperthyroidism
- Hypothyroidism is a well-described cause ↓Na
- High levels of ADH (SIADH)
- May lead to confusion

Hyponatremia
- Hypothyroidism is a well-described cause ↓Na
- High levels of ADH (SIADH)
- May lead to confusion

Hypothyroid Myopathy
- Muscle symptoms common in hypothyroid
- Weakness, cramps, myalgias
- ↑ serum creatine kinase (CK) common (up to 90%)
Hyperthyroidism

- Graves' disease (#1 cause)
- Toxic multinodular goiter
- Amiodarone
- Iodine load
- Early thyroiditis

Reverse T3

- Isomer of T3 also derived from T4
- Level usually parallels T4
- Low T4 → Low rT3
- One special use: Euthyroid sick syndrome
 - Critically ill patients → low TSH → Low T3/T4
 - Can look like central hypothyroidism
 - rT3 rises in critical illness (impaired clearance)
 - Critically ill patient with low TSH/T4/T3
 - Check rT3
 - Low → central hypothyroidism
 - High → sick euthyroid syndrome

Lab Findings

- Best initial test is TSH
- Most disorders are primary disease
 - Disorder of the thyroid gland
 - TSH is opposite thyroid hormone
 - Hypothyroidism = ↑ TSH with low T3/T4
 - Hyperthyroidism = ↓ TSH with high T3/T4

Lab Findings

- Central hyper/hypo thyroid disease
 - Low TSH and low T3/T4; High TSH and high T3/T4
 - Rare disorders of the pituitary, hypothalamus
 - Usually hypothalamic-pituitary tumors
 - Tumors block secretion TRH/TSH (hypothyroidism)
 - Rarely a TSHoma can secrete TSH (hyperthyroidism)
 - Pituitary resistance to thyroid hormone (hyperthyroidism)

Lab Findings

- Most disorders are primary disease
 - Disorder of the thyroid gland
 - TSH is opposite thyroid hormone
 - Hypothyroidism = ↑ TSH with low T3/T4
 - Hyperthyroidism = ↓ TSH with high T3/T4

Lab Findings

- Most disorders are primary disease
 - Disorder of the thyroid gland
 - TSH is opposite thyroid hormone
 - Hypothyroidism = ↑ TSH with low T3/T4
 - Hyperthyroidism = ↓ TSH with high T3/T4

Lab Findings

- Most disorders are primary disease
 - Disorder of the thyroid gland
 - TSH is opposite thyroid hormone
 - Hypothyroidism = ↑ TSH with low T3/T4
 - Hyperthyroidism = ↓ TSH with high T3/T4

Lab Findings

- Central hyper/hypo thyroid disease
 - Low TSH and low T3/T4; High TSH and high T3/T4
 - Rare disorders of the pituitary, hypothalamus
 - Usually hypothalamic-pituitary tumors
 - Tumors block secretion TRH/TSH (hypothyroidism)
 - Rarely a TSHoma can secrete TSH (hyperthyroidism)
 - Pituitary resistance to thyroid hormone (hyperthyroidism)
Graves' Disease

- Autoimmune disease
- Thyroid stimulating antibodies produced
- Symptoms of hyperthyroidism occur

Graves' Disease

- Exophthalmos (bulging eyes)
- Proptosis (protrusion of eye) and periorbital edema
- Usually no ocular symptoms
- Pretibial myxedema (shins)
- T-cell lymphocyte activation of fibroblasts
- Fibroblasts contain TSH receptor
- Stimulation → secretion of glycosaminoglycans
 - Hydrophilic substances, mostly hyaluronic acid
 - Draws in water → swelling

Graves' Disease

- Diagnosis:
 - Usually hyperthyroid labs plus exophthalmos
 - Can measure TSH receptor antibodies
 - “Thyroid stimulating immunoglobulins”
- Treatment
 - Symptoms: beta blockers, thionamides
 - Drugs often started in preparation for definitive therapy
 - Radioactive iodine ablation or surgery

Thionamides

- Methimazole
 - Inhibits thyroid peroxidase (TPO)
 - Organification of iodine
 - Coupling of MIT/DIT
- Propylthiouracil (PTU)
 - Inhibits TPO
 - Also inhibits 5’-deiodinase
 - Blunts peripheral conversion T4→T3

Thionamides

- Skin rash (common)
- Agranulocytosis
 - Rare drop in WBC
 - May present as fever, infection after starting drug
 - WBC improves with stopping drug
 - Aplastic anemia cases reported
- Hepatotoxicity
Thyroid Storm

Treatment
- Propranolol
 - Beta blocker
 - Blocks T4 → T3 conversion
- Thionamides (PTU, Methimazole)
 - SSKI (saturated solution of potassium iodide)
 - Iodide load → shuts down T4 production
 - Wolff-Chaikoff effect
- Steroids
 - Reduce T4 → T3 conversion
 - Suppress auto-immune damage
 - Treat possible concomitant adrenal insufficiency

Radioactive Iodine Uptake

- Important test for thyroid nodules
- Administration of I^{131} (lower dose than ablation)
- Contraindicated in pregnancy/breast feeding
- "Hot" nodule
 - Takes up I^{131}
 - Not-cancerous
- "Cold" nodule
 - Chance of cancer (~5%)
 - Often biopsied (Fine-needle aspiration)

Graves' Ophthalmopathy

- Sometimes worsens despite treating hyperthyroidism
- Can cause irritation, excessive tearing, pain
- Symptoms often worse by cold air, wind, bright lights
- Severe inflammation treatments:
 - Steroids
 - Radiation
 - Surgery

Toxic Adenomas

- Nodules in thyroid that function independently
 - Usually contain mutated TSH receptor
 - Do not respond to TSH
 - One nodule: Toxic adenoma
 - Multiple: Toxic multinodular goiter
- Findings:
 - Palpable nodule
 - Hyperthyroidism symptoms/labs
- Treatment: Radioactive iodine or surgery

Jod-Basedow Phenomenon

- Iodine-induced hyperthyroidism
 - Often occurs in regions of iodine deficiency
- Often occurs in patients with toxic adenomas
 - Drugs administered with high iodine content
 - Expectorants (potassium iodide)
 - CT contrast dye
 - Amiodarone

Goitrogens

- Substances that inhibit thyroid hormone production
- Most common is iodine
- **Lithium** (inhibits release of thyroid hormone)
- Certain foods (cassava and millet)
Iatrogenic Hypothyroidism

- Thyroid surgery
 - Often done for Graves’ or malignancy
- Radioiodine therapy
 - I131 administered orally as solution or capsule
 - Beta-emissions → tissue damage
 - Ablation of thyroid function over weeks
- Neck radiation
 - Hodgkin’s lymphoma
 - Head and neck cancer

Thyroid Hormone

CNS and Bone effects

- Intellectual impairment
- Coarse facial features
- Short stature
- Umbilical hernia
- Enlarged tongue

Congenital Hypothyroidism

- TH required for normal bone growth/CNS maturation
- Childhood hypothyroidism → cretinism
- Causes
 - Iodine deficiency
 - Thyroid dysgenesis
 - Inborn errors of hormone synthesis (dyshormonogenesis)
 - TPO most common

Thyroid Hormone

CNS and Bone effects

- Most common treatable cause intellectual disability
- Newborn screening programs
 - Measure T4 or TSH from heel-stick blood specimens

Iodine Excess Inhibits 5’-diodinase
Hypothyroidism
Wolff-Chaikoff Hypothyroidism
↓T4→T3
Hypothyroidism
Iodine Load Thyroiditis
Hyperthyroidism
Always check TSH before starting amiodarone

Amiodarone

- Can cause hypothyroidism
- Excess iodine → Wolff-Chaikoff Effect
 - Suppression of thyroid hormone synthesis
 - Normal patients “escape” in few weeks
 - Pre-existing subclinical thyroid disease → “failure to escape”
- Also mimics T4
 - Inhibits 5’-diodinase

Amiodarone

- Can cause hypothyroidism
- Excess iodine → Wolff-Chaikoff Effect
 - Suppression of thyroid hormone synthesis
 - Normal patients “escape” in few weeks
 - Pre-existing subclinical thyroid disease → “failure to escape”
- Also mimics T4
 - Inhibits 5’-diodinase
Lymphocytic Thyroiditis

- Painless Thyroiditis
 - Variant of Hashimoto’s
 - Lymphocytic infiltration of thyroid gland
 - Transient hyperthyroidism
 - Can look like Graves’ without eye/skin findings
 - Serum thyroid stimulating immunoglobulins not elevated
 - Followed sometimes by hypothyroidism
 - Can look like Hashimoto’s
 - Usually self-limited (weeks)

Riedel’s Thyroiditis

- Fibroblast activation/proliferation
- Fibrous tissue (collagen) deposition in thyroid
- “Rock hard” thyroid
- Often extends beyond the thyroid
 - Parathyroid glands → hypoparathyroidism
 - Recurrent laryngeal nerves → hoarseness
 - Trachea compression → difficulty breathing
 - Associated with IgG4 plasma cells
 - May be an “IgG4-related disease” (autoimmune pancreatitis)
 - IgG4 plasma cells identified in biopsy specimens
 - Parathyroid glands → hypoparathyroidism
 - Recurrent laryngeal nerves → hoarseness
 - Trachea compression → difficulty breathing
 - Associated with IgG4 plasma cells
 - May be an “IgG4-related disease” (autoimmune pancreatitis)
 - IgG4 plasma cells identified in biopsy specimens

Subacute Thyroiditis

de Quervain’s/granulomatous thyroiditis

- Granulomatous inflammation of thyroid
- Occurs in young females
- Tender, enlarged thyroid gland
- Hyperthyroid → euthyroid → hypothyroid
- Treatment:
 - Anti-inflammatories (aspirin, NSAIDs, steroids)
 - Thyroid symptoms usually mild (no treatment)
 - Usually resolves in few weeks

Hashimoto’s Thyroiditis

Chronic Autoimmune Thyroiditis

- Most common cause of hypothyroidism (non-diet)
- Lymphocytes infiltrate thyroid gland
 - Autimmune disorder (T-cell attack thyroid, B cell activation)
 - HLA-DR3, HLA-DR5 and others
- Antibodies produced
 - Anti-TPO
 - Anti-thyroglobulin
- Histology:
 - Massive lymphocytic infiltrate (germinal centers)
 - Hurthle cells (enlarged eosinophilic follicular cells)

Hashimoto’s Thyroiditis

Chronic Autoimmune Thyroiditis

- Primarily occurs in women
- Enlarged non-tender thyroid gland
- Gradual loss of thyroid function → symptoms
- Symptoms/labs of hypothyroidism
- Treatment: thyroid hormone replacement
- Increased risk of Non Hodgkin B cell lymphoma

Lymphocytic Thyroiditis

- Variant of Hashimoto’s
- Lymphocytic infiltration of thyroid gland
- Transient hyperthyroidism
 - Can look like Graves’ without eye/skin findings
 - Serum thyroid stimulating immunoglobulins not elevated
- Followed sometimes by hypothyroidism
 - Can look like Hashimoto’s
 - Usually self-limited (weeks)
Thyroid Cancer

Jason Ryan, MD, MPH

General Principles
- Thyroid cancer usually no hyper/hypo symptoms
- Often presents as nodule
- Differential is benign adenoma versus cancer
- Biopsy done by **fine needle aspiration**

Follicular Adenoma
- Common cause of thyroid nodules
- Benign proliferation of follicles
- Normal follicular tissue seen on biopsy
- Completely surrounded by fibrous capsule
- **FNA cannot distinguish between adenomas/cancer**
 - Cannot see entire capsule
 - Follicular carcinoma has similar histology by FNA
 - FNA follicular pathology followed over time
 - Growth, suspicious new findings → surgery

Radioactive Iodine Uptake
- Small oral dose I131 given to patient
- Scintillation camera → image of thyroid
- Normal: diffuse, even uptake
- Diffuse high uptake: Graves’
- Diffuse low uptake: Hashimoto’s
- Multiple areas of high uptake: nodular goiter
- Single "hot" nodule: adenoma
- Single "cold" nodule: Possible cancer
 - Most cancers do not make hormone
 - About 10% cold nodules are malignant

Thyroid Imaging
- Ultrasound
 - Some characteristics suggest cancer
 - Borders, vascularity, calcifications

Thyroid Cancer
- Papillary
- Follicular
- Medullary
- Anaplastic

Follicular Adenoma
- Common cause of thyroid nodules
- Benign proliferation of follicles
- Normal follicular tissue seen on biopsy
- Completely surrounded by fibrous capsule
- **FNA cannot distinguish between adenomas/cancer**
 - Cannot see entire capsule
 - Follicular carcinoma has similar histology by FNA
 - FNA follicular pathology followed over time
 - Growth, suspicious new findings → surgery
Papillary Carcinoma

- Most common form thyroid cancer (~80%)
- Increased risk with prior radiation exposure
 - Childhood chest radiation for mediastinal malignancy or acne
 - Survivors of atomic bomb detonation (Japan)
 - Nuclear power plant accidents (Chernobyl)
- Presents as thyroid nodule
 - Sometimes seen on chest/neck imaging (CT/MRI)
 - Diagnosis made after fine needle aspiration (FNA)
- Excellent prognosis
 - Treated with surgery plus radioactive iodine ablation

Psammoma Bodies

- Calcifications with an layered pattern
- Seen in other neoplasms but only papillary for thyroid

Papillary Carcinoma

- Three key pathology findings:
 - Psammoma bodies
 - Nuclear grooves
 - Orphan Annie's Eye Nuclei
- Diagnosis made by nuclear findings

Nuclear Grooves

- Empty-appearing nuclei

Orphan Annie's Eyes

- Empty-appearing nuclei
Anaplastic Carcinoma

- Occurs in elderly
- Highly malignant - invades local tissues
- Dysphagia (esophagus)
- Hoarseness (recurrent laryngeal nerve)
- Dyspnea (trachea)
- Don't confuse with Riedel's ("rock hard" thyroid/young pt)
- Poor prognosis
- Pathology: Undifferentiated cells
 - No papilla, follicles, or amyloid

MEN Syndromes

- Gene mutations that run in families
- Cause multiple endocrine tumors
- MEN 2A and 2B associated with medullary carcinoma
 - Caused by RET oncogene mutation
 - Some patients have elective thyroidectomy

Follicular Carcinoma

- Similar to follicular adenoma
- Breaks through ("invades") fibrous capsule
- FNA cannot distinguish between adenomas/cancer
- Follicular pathology followed over time
 - Growth, suspicious new findings → surgery

Medullary Carcinoma

- Cancer of parafollicular cells (C cells)
- Produces calcitonin
 - Lowers serum calcium
 - Normally minimal effect on calcium levels
 - Used for monitoring
- Amyloid deposits in thyroid
 - Amyloid = protein deposits
 - Calcitonin = peptide
 - Appearance of amyloid on biopsy

Follicular Carcinoma

- Possible hematogenous metastasis
- Treatment:
 - Thyroidectomy
 - I131 to ablate any remaining tissue or metastasis

Anaplastic Carcinoma

- Occurs in elderly
- Highly malignant - invades local tissues
- Dysphagia (esophagus)
- Hearseness (recurrent laryngeal nerve)
- Dyspnea (trachea)
- Don't confuse with Riedel's ("rock hard" thyroid/young pt)
- Poor prognosis
- Pathology: Undifferentiated cells
 - No papilla, follicles, or amyloid
Adrenal Glands

Cortex and Medulla
- Cortex: Three groups of hormones
 - Mineralocorticoids (aldosterone)
 - Glucocorticoids (cortisol)
 - Androgens (testosterone)
 - Derived from mesoderm
- Medulla
 - Epinephrine and norepinephrine
 - Sympathetic nervous system control
 - Derived from neural crest

Mineralocorticoids
- Most important is aldosterone
- Key effects on kidney function
- Release controlled by RAA system
- Renin-angiotensin-aldosterone
- Increase Na+ /Water resorption
- Promote K+ /H+ excretion

Signal Transmission

Adrenal Glands
- Located above kidneys
- Arteries: Suprarenal arteries
 - Left and right
 - Superior, inferior, middle
-Veins:
 - Left adrenal → renal vein → IVC
 - Right adrenal → IVC
Cortisol

- Major glucocorticoid
- Synthesized by adrenal cortex
- Binds to intracellular receptors (cytosol)
 - Glucocorticoid receptor (GR)
- Translocates to nucleus
- Activates/suppresses gene transcription

Cortisol Binding Globulin

- Cortisol poorly soluble in plasma
- Most (>90%) serum cortisol bound to CBG
- Levels ↑ estrogen

Adrenal Androgens

- Small contribution to androgen production in males
- ~50% androgens for females
- Clinical relevance: congenital adrenal hyperplasia
 - Over/underproduction → abnormal sexual development
- Production stimulated by ACTH (like cortisol)

Pituitary-Adrenal Axis

- Controls cortisol secretion
- Hypothalamus: CRH
 - Corticotropin releasing hormone
 - Paraventricular nucleus (PVN)
- Anterior pituitary: ACTH
 - Adrenocorticotropic hormone
 - Acts on adrenal gland
 - cAMP/PKA 2nd messenger
- Adrenal: Cortisol

Circadian Rhythms

- Serum cortisol highest early morning (about 6 AM)
 - 10 to 20 mcg/dL
- Lowest one hour after sleep onset
 - Less than 5 mcg/dL
- Testing rarely done with single blood test

Adrenal Androgens

- Small contribution to androgen production in males
- ~50% androgens for females
- Clinical relevance: congenital adrenal hyperplasia
 - Over/underproduction → abnormal sexual development
- Production stimulated by ACTH (like cortisol)

Cortisol

- Major glucocorticoid
- Synthesized by adrenal cortex
- Binds to intracellular receptors (cytosol)
 - Glucocorticoid receptor (GR)
- Translocates to nucleus
- Activates/suppresses gene transcription

Cortisol Binding Globulin

- Cortisol poorly soluble in plasma
- Most (>90%) serum cortisol bound to CBG
- Levels ↑ estrogen

Adrenal Androgens

- Small contribution to androgen production in males
- ~50% androgens for females
- Clinical relevance: congenital adrenal hyperplasia
 - Over/underproduction → abnormal sexual development
- Production stimulated by ACTH (like cortisol)

Pituitary-Adrenal Axis

- Controls cortisol secretion
- Hypothalamus: CRH
 - Corticotropin releasing hormone
 - Paraventricular nucleus (PVN)
- Anterior pituitary: ACTH
 - Adrenocorticotropic hormone
 - Acts on adrenal gland
 - cAMP/PKA 2nd messenger
- Adrenal: Cortisol

Circadian Rhythms

- Serum cortisol highest early morning (about 6 AM)
 - 10 to 20 mcg/dL
- Lowest one hour after sleep onset
 - Less than 5 mcg/dL
- Testing rarely done with single blood test

Cortisol

- Major glucocorticoid
- Synthesized by adrenal cortex
- Binds to intracellular receptors (cytosol)
 - Glucocorticoid receptor (GR)
- Translocates to nucleus
- Activates/suppresses gene transcription

Cortisol Binding Globulin

- Cortisol poorly soluble in plasma
- Most (>90%) serum cortisol bound to CBG
- Levels ↑ estrogen

Adrenal Androgens

- Small contribution to androgen production in males
- ~50% androgens for females
- Clinical relevance: congenital adrenal hyperplasia
 - Over/underproduction → abnormal sexual development
- Production stimulated by ACTH (like cortisol)

Pituitary-Adrenal Axis

- Controls cortisol secretion
- Hypothalamus: CRH
 - Corticotropin releasing hormone
 - Paraventricular nucleus (PVN)
- Anterior pituitary: ACTH
 - Adrenocorticotropic hormone
 - Acts on adrenal gland
 - cAMP/PKA 2nd messenger
- Adrenal: Cortisol

Circadian Rhythms

- Serum cortisol highest early morning (about 6 AM)
 - 10 to 20 mcg/dL
- Lowest one hour after sleep onset
 - Less than 5 mcg/dL
- Testing rarely done with single blood test

Cortisol

- Major glucocorticoid
- Synthesized by adrenal cortex
- Binds to intracellular receptors (cytosol)
 - Glucocorticoid receptor (GR)
- Translocates to nucleus
- Activates/suppresses gene transcription

Cortisol Binding Globulin

- Cortisol poorly soluble in plasma
- Most (>90%) serum cortisol bound to CBG
- Levels ↑ estrogen

Adrenal Androgens

- Small contribution to androgen production in males
- ~50% androgens for females
- Clinical relevance: congenital adrenal hyperplasia
 - Over/underproduction → abnormal sexual development
- Production stimulated by ACTH (like cortisol)

Pituitary-Adrenal Axis

- Controls cortisol secretion
- Hypothalamus: CRH
 - Corticotropin releasing hormone
 - Paraventricular nucleus (PVN)
- Anterior pituitary: ACTH
 - Adrenocorticotropic hormone
 - Acts on adrenal gland
 - cAMP/PKA 2nd messenger
- Adrenal: Cortisol

Circadian Rhythms

- Serum cortisol highest early morning (about 6 AM)
 - 10 to 20 mcg/dL
- Lowest one hour after sleep onset
 - Less than 5 mcg/dL
- Testing rarely done with single blood test

Cortisol

- Major glucocorticoid
- Synthesized by adrenal cortex
- Binds to intracellular receptors (cytosol)
 - Glucocorticoid receptor (GR)
- Translocates to nucleus
- Activates/suppresses gene transcription
Cortisol Effects

- Enhanced effects of glucagon, epinephrine
- Leads to insulin resistance
- Long term steroid use: diabetes

Cortisol Effects

- Activation of lipolysis in adipocytes
 - \uparrow free fatty acids
 - \uparrow total cholesterol, \uparrow triglycerides
 - Stimulate adipocyte growth
 - Key effect: fat deposition

Cortisol Effects

- Inactivate NF-κB
 - Key inflammatory transcription factor
 - Mediates response to TNF-α
 - Controls synthesis inflammatory mediators
 - COX-2, PLA2, Lipoxygenase

Cortisol Effects

- More glucose produced by liver
 - \uparrow synthesis of glucose 6-phosphatase, PEPCK
 - \uparrow gluconeogenesis
 - Less glucose taken up peripherally (muscle, fat)
 - Net results: \uparrow serum glucose
 - More glycogen storage in liver
 - \uparrow synthesis of glycogen synthase

Corticosteroid Drugs

- Cortisone
- Prednisone
- Methylprednisolone
- Triamcinolone
- Betamethasone
- Hydrocortisone
- Dexamethasone

Corticosteroid Drugs

- Triamcinolone
- Betamethasone
- Hydrocortisone

Cortisol

- Inactivate NF-κB
- Key inflammatory transcription factor
- Mediates response to TNF-α
- Controls synthesis inflammatory mediators
- COX-2, PLA2, Lipoxygenase

Cortisol

- More glucose produced by liver
- \uparrow synthesis of glucose 6-phosphatase, PEPCK
- \uparrow gluconeogenesis
- Less glucose taken up peripherally (muscle, fat)
- Net results: \uparrow serum glucose
- More glycogen storage in liver
- \uparrow synthesis of glycogen synthase

Cortisol

- Inactivate NF-κB
- Key inflammatory transcription factor
- Mediates response to TNF-α
- Controls synthesis inflammatory mediators
- COX-2, PLA2, Lipoxygenase

Cortisol

- More glucose produced by liver
- \uparrow synthesis of glucose 6-phosphatase, PEPCK
- \uparrow gluconeogenesis
- Less glucose taken up peripherally (muscle, fat)
- Net results: \uparrow serum glucose
- More glycogen storage in liver
- \uparrow synthesis of glycogen synthase

Cortisol

- Inactivate NF-κB
- Key inflammatory transcription factor
- Mediates response to TNF-α
- Controls synthesis inflammatory mediators
- COX-2, PLA2, Lipoxygenase

Cortisol

- More glucose produced by liver
- \uparrow synthesis of glucose 6-phosphatase, PEPCK
- \uparrow gluconeogenesis
- Less glucose taken up peripherally (muscle, fat)
- Net results: \uparrow serum glucose
- More glycogen storage in liver
- \uparrow synthesis of glycogen synthase
Cortisol
Effects
- Muscle atrophy
- Skin effects
 - Blunted epidermal cell division in skin
 - ↓ collagen, inhibition of fibroblasts
 - Net effects: Thin skin, easy bruising, striae
- Bones: Inhibits osteoblasts
 - Steroids → osteopenia and osteoporosis

Zones of the Adrenal Glands

Zona Glomerulosa
3-β-hydroxysteroid Dehydrogenase

Aldosterone
Cortico
terone

11-deoxycorticosterone

Pregnenolone
Progesterone

Zona Medulla

Aldosterone
Synthase

Aldosterone
Cortico
terone

11-deoxycorticosterone

Pregnenolone
Progesterone

Cortisol
Effects
- Muscle atrophy
- Skin effects
 - Blunted epidermal cell division in skin
 - ↓ collagen, inhibition of fibroblasts
 - Net effects: Thin skin, easy bruising, striae
- Bones: Inhibits osteoblasts
 - Steroids → osteopenia and osteoporosis
Ketoconazole

- Antifungal
- Blocks ergosterol synthesis in fungi
- Potent inhibitor of 17,20 lyase
 - Key side effect: gynecomastia
- Also inhibits 17-alpha hydroxylase, desmolase
 - Blocks cortisol synthesis
- Can be used to treat Cushing’s syndrome
CAH
Congenital Adrenal Hyperplasia

- Loss of one of the four enzymes for cortisol synthesis
 - 21-α hydroxylase
 - 11-β hydroxylase
 - 17-α hydroxylase
 - 3-β hydroxysteroid dehydrogenase

CAH

- Enzyme deficiency syndrome
- Can cause ↑ production of other hormones
 - Mineralocorticoids
 - Androgens

Calcium
Cholesterol
Aldosterone
Cortisol
Androgens

ACTH

CAH
Congenital Adrenal Hyperplasia

- All result in low cortisol
- Stimulates ACTH release

Low Cortisol
Signs/Symptoms

- Hypoglycemia
- Nausea/vomiting
Hydroxylase Deficiency

- **Cholesterol**
- **Aldosterone**
- **Cortisol**
- **Androgens**

ACTH Effects

- High ACTH can cause **skin hyperpigmentation**
- Melanocyte stimulating hormone (MSH)
- Common precursor protein in pituitary with ACTH
- ↑ melanin synthesis

Ambiguous Genitalia

- Females (XX) with excess androgen exposure
- Males (XY) with deficient androgen exposure

Androgens

- Depend on chromosomal sex of child (XX/XY)
- Excess androgens
 - Female (XX): Ambiguous genitalia
 - Male (XY): Precocious (early) puberty
- Androgen deficiency
 - Female (XX): Normal genitalia
 - Male (XY): Female or ambiguous genitalia

Aldosterone

- **Deficiency**
 - Na loss → water loss
 - Hypovolemia → shock
 - Hyperkalemia
 - ↑ renin
- **Excess**
 - Na retention
 - Hypertension
 - Hypokalemia
 - ↓ renin

Androgens

- Signs/Symptoms
 - Depend on chromosomal sex of child (XX/XY)
 - Excess androgens
 - Female (XX): Ambiguous genitalia
 - Male (XY): Precocious (early) puberty
 - Androgen deficiency
 - Female (XX): Normal genitalia
 - Male (XY): Female or ambiguous genitalia

21-α Hydroxylase Deficiency

- ACTH
- Cholesterol
- Aldosterone
- Cortisol
- Androgens

21-α Hydroxylase Deficiency

- ↑ ACTH
- Cholesterol
- Aldosterone
- Cortisol
- Androgens
21-α Hydroxylase Deficiency
- Classic cause of CAH (90% of CAH)
- Low cortisol symptoms
- Low mineralocorticoid symptoms
- Excess androgen symptoms
 - Girls (XX): ambiguous genitalia
 - Boys (XY): precocious puberty (early onset)
- Variable symptoms based on enzyme levels
 - Classic form: 0 to 2% normal enzyme activity
 - Non-classic forms: 20-50% normal enzyme activity

11-β Hydroxylase Deficiency
- Similar to 21-α hydroxylase deficiency
- Low cortisol symptoms
- Girls: ambiguous genitalia
- Boys: precocious puberty
- One exception: ↑ mineralocorticoid activity
 - ↑ 11-deoxycorticosterone (weak mineralocorticoid)
 - Hypertension
 - Hypokalemia

17-α Hydroxylase Deficiency
- Cytochrome P450c17 enzyme (CYP17A1)
- Found in adrenal glands and gonads
- Catalyzes two reactions
 - 17-hydroxylase
 - 17,20 lyase

21-α Hydroxylase Deficiency
<table>
<thead>
<tr>
<th>Type</th>
<th>Clinical Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classic, Salt-losing</td>
<td>Nausea/Vomiting</td>
</tr>
<tr>
<td></td>
<td>Volume depletion</td>
</tr>
<tr>
<td></td>
<td>Hypertension</td>
</tr>
<tr>
<td></td>
<td>7 to 14 days</td>
</tr>
<tr>
<td>Milder Forms</td>
<td>Females: Ambiguous genitalia</td>
</tr>
<tr>
<td></td>
<td>Males: Precocious puberty</td>
</tr>
</tbody>
</table>
CAH Screening
• Some states screen with newborn blood testing
• Measure level of 17-Hydroxyprogesterone
• Elevated level in 21-α hydroxylase deficiency (most common)

Disorders of Sex Development
Ambiguous Genitalia
46, XX 46, XY
Excess Androgens
Often CAH
Lack of androgens
Synthesis/Effect
Rarely due to CAH

17-α Hydroxylase Deficiency
• Females (XX):
 • Normal at birth
 • Primary amenorrhea at puberty
 • Theca cells lack of androgens \(\rightarrow\) ↓ estradiol
 • Often diagnosed at puberty
 • XX female fails to develop
 • XY phenotypic female or male fails to develop
 • Hypertension, low K+ identified

17-α Hydroxylase Deficiency
• Males (XY):
 • Female or ambiguous external genitalia
 • Absent uterus/fallopian tubes (Sertoli cells \(\rightarrow\) MIH)
 • Undescended testes

17-α Hydroxylase Deficiency
• Low cortisol
• Excess mineralocorticoids: HTN, ↓K+
• Low androgens
 • CYP17A1 : adrenal gland and gonads

17-α Hydroxylase Deficiency
• Males (XY):
 • Female or ambiguous external genitalia
 • Absent uterus/fallopian tubes (Sertoli cells \(\rightarrow\) MIH)
 • Undescended testes

3-β Hydroxysteroid Dehydrogenase Deficiency
\(\uparrow\) ACTH

17-α Hydroxylase Deficiency
• Low cortisol
• Excess mineralocorticoids: HTN, ↓K+
• Low androgens
• CYP17A1 : adrenal gland and gonads

CAH Screening
• Some states screen with newborn blood testing
• Measure level of 17-Hydroxyprogesterone
 • Elevated level in 21-α hydroxylase deficiency (most common)
CAH Treatment

- Many forms treated with glucocorticoids
- Replenishes cortisol
- Lowers ACTH
- Stops overproduction of other hormones
- Can also use mineralocorticoids (fludrocortisone)
Cushing’s Syndrome

Excess Cortisol Effects

- Stimulation of adipocytes → growth
- Progressive central obesity
- Face, neck, trunk, abdomen
- “Moon face”
- “Buffalo hump”
- Fat mound at base of back of neck

Cortisol alters GnRH release → ↓ FSH, LH

- Menstrual irregularities in women
 - Abnormal cycles (80%)
 - Oligomenorrhea (~30%)
 - Amenorrhea (~30%)
- Hirsutism of face in women
- Males: Erectile dysfunction

Hypertension

Hyperglycemia

Diabetes (insulin resistance)

Immune suppression

- Risk of infections, especially opportunistic

Cushing’s Syndrome

- Syndrome of clinical features due to excess cortisol
- Most common cause: corticosteroid medication
- Often prescribed for inflammatory conditions
 - e.g., daily prednisone for lupus
- Cushing’s disease: Pituitary ACTH-secreting tumor
 - One cause of Cushing’s syndrome

Adrenal Disorders

- Excess cortisol
- Insufficient cortisol
- Excess mineralocorticoids
- Tumors

Adrenal Disorders

- Syndrome of clinical features due to excess cortisol
- Most common cause: corticosteroid medication
- Often prescribed for inflammatory conditions
 - e.g., daily prednisone for lupus
- Cushing’s disease: Pituitary ACTH-secreting tumor
 - One cause of Cushing’s syndrome

Adrenal Disorders

- Hypertension
- Hyperglycemia
- Diabetes (insulin resistance)
- Immune suppression
- Risk of infections, especially opportunistic

Adrenal Disorders

- Excess cortisol
- Insufficient cortisol
- Excess mineralocorticoids
- Tumors

Adrenal Disorders

- Syndrome of clinical features due to excess cortisol
- Most common cause: corticosteroid medication
- Often prescribed for inflammatory conditions
 - e.g., daily prednisone for lupus
- Cushing’s disease: Pituitary ACTH-secreting tumor
 - One cause of Cushing’s syndrome

Adrenal Disorders

- Hypertension
- Hyperglycemia
- Diabetes (insulin resistance)
- Immune suppression
- Risk of infections, especially opportunistic
Cushing’s Syndrome

Causes
- ACTH-independent (↓ACTH)
 - Glucocorticoid therapy
 - Adrenal adenoma
- ACTH-dependent (↑ACTH)
 - Cushing’s disease (pituitary ACTH secreting tumor)
 - Ectopic ACTH (small cell lung cancer)
 - ↑ACTH \(\rightarrow\) adrenal hyperplasia \(\rightarrow\) cortisol

Skin Changes
- Thinning of skin
- Easy bruising
- Striae: Stretch marks
 - Purple lines on skin
 - Fragile skin stretches over trunk, breasts, abdomen
 - Thin skin cannot hide venous blood in dermis
 - Commonly occur on sides and lower abdomen

Cushing’s Syndrome

Diagnosis
- Low dose dexamethasone suppression test
 - 1mg dexamethasone (“low dose”) administered at bedtime
 - Suppresses normal pituitary ACTH release
 - Morning blood test
 - Cortisol level should be low (suppressed)
 - Cortisol remains high in Cushing’s syndrome
 - Adenomas, tumors do not suppress cortisol production

- 24-hour urine free cortisol
 - Integrates cortisol level over time
 - Salivary cortisol
 - No cortisol binding globulin in saliva
 - Free cortisol level measured at night (should be low)

- Measuring plasma cortisol difficult
 - Circadian rhythm → high levels in AM
 - Most cortisol bound to CBG
 - CBG levels can affect serum measurement

- Special note: skin hyperpigmentation
 - Can occur in ACTH-dependent Cushing’s syndrome
 - Caused by ↑ACTH not cortisol
 - ↑ACTH \(\rightarrow\) ↑MSH

- Thinning of skin
- Easy bruising
- Striae: Stretch marks
- Purple lines on skin
- Fragile skin stretches over trunk, breasts, abdomen
- Thin skin cannot hide venous blood in dermis
- Commonly occur on sides and lower abdomen
Adrenal Insufficiency

Symptoms
• Loss of cortisol
 • Weakness, fatigue
 • Weight loss
• Postural hypotension
 • Nausea, abdominal pain, diarrhea
 • Hypoglycemia
• Loss of aldosterone
 • Potassium retention → hyperkalemia
 • H+ retention → acidosis
 • Sodium loss in urine → hypovolemia

Cushing’s Syndrome

Diagnosis
• Step 1: Establish Cushing’s syndrome
• Step 2: Establish cause
• Key test is serum ACTH level

<table>
<thead>
<tr>
<th>ACTH-Dependent Causes (High ACTH)</th>
<th>ACTH-Independent Causes (Low ACTH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cushing’s disease</td>
<td>Steroid therapy</td>
</tr>
<tr>
<td>Ectopic ACTH</td>
<td>Adrenal adenoma</td>
</tr>
</tbody>
</table>

Cushing’s Syndrome

Treatment
• Surgery
 • Removal of adenoma (adrenal gland, pituitary)
 • Removal of lung tumor
 • Ketoconazole

Ketoconazole

• Antifungal
 • Blocks ergosterol synthesis in fungi
 • Also blocks 1st step in cortisol synthesis
 • Desmolase (side chain cleavage)
 • Can be used to treat Cushing’s syndrome
 • Also potent inhibitor androgen synthesis
 • Key side effect: gynecomastia

High Dose Dexamethasone

• Low dose testing (1mg)
 • Used to establish diagnosis of Cushing’s syndrome
• High dose dexamethasone test (8mg)
 • Differentiate causes of high ACTH Cushing’s syndrome
 • Will suppress cortisol in pituitary adenomas (↑ set point)
 • Will not suppress cortisol from ACTH tumors

AM Cortisol After Dexamethasone

<table>
<thead>
<tr>
<th>Low Dose</th>
<th>High Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>↓</td>
</tr>
<tr>
<td>Pituitary Adenoma</td>
<td>--</td>
</tr>
<tr>
<td>ACTH Tumor</td>
<td>--</td>
</tr>
</tbody>
</table>

Adrenal Insufficiency

Symptoms
• Loss of cortisol
 • Weakness, fatigue
 • Weight loss
• Postural hypotension
 • Nausea, abdominal pain, diarrhea
 • Hypoglycemia
• Loss of aldosterone
 • Potassium retention → hyperkalemia
 • H+ retention → acidosis
 • Sodium loss in urine → hypovolemia
Waterhouse-Friderichsen Syndrome
- Rare cause of acute adrenal insufficiency
- Caused by acute hemorrhage into adrenal glands
- Associated with meningococcemia
- Clinical scenario:
 - Patient with bacterial meningitis
 - Acute onset of shock

Addison's Hyperpigmentation
- Generalized hyperpigmentation
- Most obvious in sun-exposed areas
 - Face, neck, backs of hands
- Also areas of friction/pressure
 - Elbows, knees, knuckles,
- May occur in palmar creases
- Classic scenario:
 - GI symptoms (nausea, pain)
 - Darkening skin

Adrenal Crisis
- Acute adrenal insufficiency
- Abrupt loss of cortisol and aldosterone
- Main manifestation is shock
- Hypoglycemia
- Other symptoms: nausea, vomiting, fatigue, confusion
- Often when acute adrenal function cannot be met
 - Infection, surgery, trauma in patient with adrenal insufficiency
 - Patients on chronic steroids
 - "Stress dose steroids" for prevention

Addison's Disease
- Common Causes
 - Autoimmune adrenalitis
 - Antibody and cell-mediated disorder
 - Antibodies to 21-hydroxylase commonly seen
 - Atrophy of adrenal gland
 - Loss of cortex
 - Medulla is spared
 - Infections
 - Tuberculosis
 - Fungal (histoplasmosis, cryptococcus)
 - CMV
 - Rare: tumor metastasis especially lung

Metastasis from Lung Cancer
- Adrenals
 - Usually found on imaging without symptoms
- Brain
 - Headache, neuro deficits, seizures
- Bone
 - Pathologic fractures
- Liver
 - Hepatomegaly, jaundice

ACTH Effects
- ACTH is high in primary adrenal insufficiency
- This leads to skin hyperpigmentation
- Melanocyte stimulating hormone (MSH) shares common precursor protein in pituitary with ACTH
- ↑ melanin synthesis

Addison's Hyperpigmentation
- Generalized hyperpigmentation
- Most obvious in sun-exposed areas
 - Face, neck, backs of hands
- Also areas of friction/pressure
 - Elbows, knees, knuckles,
- May occur in palmar creases
- Classic scenario:
 - GI symptoms (nausea, pain)
 - Darkening skin
Primary Aldosteronism
Mineralocorticoid Excess
• Hypertension, classically at a young age
• Hypokalemia
• Weakness, muscle cramps
• Unreliable finding → many cases with normal K+
• Metabolic alkalosis

Adrenal Insufficiency
Diagnostic Tests
• 8 AM serum cortisol
 • Levels should be highest at this time
 • Low level indicates disease
• Serum ACTH
 • High ACTH with low cortisol = primary disease
 • Low ACTH with low cortisol = secondary disease

Adrenal Insufficiency
Important Points
• No skin findings
• ACTH is not elevated
• No hyperkalemia
• Aldosterone not effected

2° Adrenal Insufficiency
• Most common cause: glucocorticoid therapy
• Chronic suppression ACTH release
• Leads to adrenal atrophy over time
• Sudden discontinuation → hypoadrenalism

2° Adrenal Insufficiency
• Basis for “weaning” off steroids
• Slow discontinuation over time
• Basis for “stress dose steroids”
 • Patients on chronic steroids with infection, trauma, surgery
 • Risk of adrenal crisis
 • High dose of glucocorticoids administered

Primary Aldosteronism
Mineralocorticoid Excess
• Hypertension, classically at a young age
• Hypokalemia
• Weakness, muscle cramps
• Unreliable finding → many cases with normal K+
• Metabolic alkalosis

Adrenal Insufficiency
Diagnostic Tests
• ACTH stimulation test ("cosyntropin stim test")
 • Exogenous ACTH administered
 • Cortisol should rise 30-60 minutes later
 • Failure to rise = primary adrenal insufficiency
 • Normal rise = secondary disorder

Adrenal Insufficiency
Important Points
• No skin findings
• ACTH is not elevated
• No hyperkalemia
• Aldosterone not effected

2° Adrenal Insufficiency
• Most common cause: glucocorticoid therapy
• Chronic suppression ACTH release
• Leads to adrenal atrophy over time
• Sudden discontinuation → hypoadrenalism
Primary Aldosteronism

Most common causes
- Bilateral idiopathic hyperaldosteronism (~60%)
- Aldosterone-producing adenoma (~30%)
 - Sometimes called Conn’s syndrome

Diagnosis
- Abdominal imaging for adrenal nodules/tumors
- **Adrenal vein sampling**
 - Differentiates unilateral vs. bilateral disease
 - Measure PAC and PRA in each vein

Treatment
- Surgical adrenalectomy
- Adenomas
- Unilateral hyperplasia
- **Spironolactone**
 - Drug of choice
 - Potassium-sparing diuretic
 - Blocks aldosterone effects

Primary Aldosteronism

Diagnosis
- Plasma aldosterone concentration (PAC)
- **Plasma renin activity (PRA)**
 - Plasma incubated
 - Renin cleaves angiotensinogen in plasma
 - Angiotensin I produced measured by assay
 - ↓PRA and ↑PAC = Primary aldosteronism
 - ↑PRA and ↑PAC = Secondary aldosteronism
 - Renal artery stenosis, CHF, low volume

Most common causes
- Bilateral idiopathic hyperaldosteronism (~60%)
- Aldosterone-producing adenoma (~30%)
 - Sometimes called Conn’s syndrome

Licorice

- Contains glycyrrhetinic acid (a steroid)
 - Weak mineralocorticoid effect
 - Inhibits renal 11-beta-hydroxysteroid dehydrogenase
 - Large amounts → Hypertension, hypokalemia
 - Plasma aldosterone level low

Pheochromocytoma

- Catecholamine-secreting tumor
 - Secretes epinephrine, norepinephrine, dopamine
 - **Chromaffin cells** of adrenal medulla
 - Derivatives of neural crest
Pheochromocytoma

Treatment
• Definitive therapy: Surgery
• Pre-operative management:
 • Phenoxybenzamine (irreversible α-blocker)
 • Non-selective beta blockers (propranolol)

Diagnosis
• Metanephrines often measured for diagnosis
 • Metanephrine and normetanephrine
 • 24-hour urine collection or plasma
 • Older test: 24-hour urine collection of VMA

Clinical presentation
• Classically episodic symptoms
• Hypertension
• Headaches
• Palpitations
• Sweating
• Pallor (pale skin)

Monoamine Oxidase (MAO)
Catechol-O-methyltransferase (COMT)

Dopamine
MAO
COMT
MAO
COMT
MAO
COMT
MAO
COMT

Epinephrine
Homovanillic Acid (HVA)
Vanillylmandelic acid (VMA)

Noradrenaline
Normetanephrine
Metanephrine

Pheochromocytoma

Dopamine
Catechol-O-methyltransferase (COMT)

Epinephrine
Vanillylmandelic acid (VMA)

Dihydroxymandelic Acid
Paraganglioma
- Catecholamine-secreting tumor
- Arise from sympathetic ganglia (extraadrenal)
- Similar clinical presentation to pheochromocytoma

MIBG
Metaiodobenzylguanidine
- Chemical analog of norepinephrine
- Diagnosis of pheochromocytoma & neuroblastoma
- Concentrated in sympathetic tissues
- Labeled with radioactive iodine (131I)
- Will concentrate in tumors → emit radiation
- Special note: thyroid gland must be protected
- Non-radioactive iodine
- Will be taken up by thyroid instead

Neuroblastoma
- Tumor of primitive sympathetic ganglion cells
- Also derived from neural crest cells
- Can arise anywhere in sympathetic nervous system
 - Adrenal gland most common (40 percent)
 - Abdominal (25 percent)
 - Thoracic (15 percent)
- Almost always occurs in children
 - 3rd most common childhood cancer (leukemia, brain tumors)
 - Most common extracranial tumor

Neuroblastoma
- Symptoms related to tumor mass effect
 - Commonly present as abdominal pain
- Can synthesize catecholamines
 - Rarely cause symptoms like pheochromocytoma
 - Urinary HVA/VMA levels used for diagnosis
- Rare feature: Opsoclonus-myoclonus-ataxia (OMA)
 - Rare paraneoplastic syndrome
 - Rapid eye movements, rhythmic jerking, ataxia
 - Half of OMA patients have a neuroblastoma

Neuroblastoma
- Diverse range of disease progression
 - Key risk factor: Age at diagnosis
 - Infants with disseminated disease often cured
 - Children over 18 months often die despite therapy
 - Younger age = better prognosis
- N-myc
 - Proto-oncogene
 - Amplified/overexpressed in some tumors
 - Associated with poor prognosis

Adrenal Adenomas
- Often discovered on abdominal imaging
 - "Adrenal incidentaloma"
- Concern for malignancy and/or functioning adenoma
Adrenal Adenomas

- May secrete cortisol or aldosterone
- Common functional tests
 - 24 hour urine metanephrines (pheochromocytoma)
 - 24 hour urine free cortisol (Cushing’s)
 - Low dose dexamethasone suppression (Cushing’s)
 - Serum PRA/aldosterone (aldosteronism)
- Often followed for growth over time (non-functional)
- Large (>5cm) often removed
Endocrine Pancreas

Insulin
- Protein hormone
- Synthesized by beta cells
- Synthesized as preproinsulin
 - Made by ribosomes of rough endoplasmic reticulum
- Preproinsulin cleaved to proinsulin
 - Transferred to Golgi apparatus
- Packaged into secretory granules
 - Proinsulin cleaved to insulin and C-peptide in granules

Insulin Structure
- Alpha chain
- Beta chain
- Disulfide bridges
- C-peptide
 - "Connecting" peptide
 - Long half-life
 - Indicator insulin production

Insulin Release
- Produced in response to: glucose, amino acids

Pancreatic Islets
Islets of Langerhans
- Millions of islets found in pancreatic tissue
- Endocrine portion of pancreas
- Beta cells: Insulin
 - Most abundant cell type
 - Centrally located
- Alpha cells: Glucagon
- Delta cells: Somatostatin
- Alpha/delta cells: Outer islet

Pancreatic Islets
- Alpha chain
- Beta chain
- Disulfide bridges
- C-peptide

Glucose
Amino Acid

Endocrine Pancreas
Jason Ryan, MD, MPH

Pancreatic Islets
Islets of Langerhans
- Millions of islets found in pancreatic tissue
- Endocrine portion of pancreas
- Beta cells: Insulin
 - Most abundant cell type
 - Centrally located
- Alpha cells: Glucagon
- Delta cells: Somatostatin
- Alpha/delta cells: Outer islet

Pancreatic Islets
- Alpha chain
- Beta chain
- Disulfide bridges
- C-peptide

Glucose
Amino Acid

Insulin Release
- Produced in response to: glucose, amino acids

Insulin Release
- Produced in response to: glucose, amino acids

Pancreatic Islets
- Alpha chain
- Beta chain
- Disulfide bridges
- C-peptide

Glucose
Amino Acid
Insulin Release
- Production inhibited by epinephrine
 - Beta-2 receptors: ↑ insulin
 - Alpha-2 receptors: ↓ insulin release
 - Alpha effect is dominant effect in pancreas
 - Fight or flight response → ↑ plasma glucose

Glucokinase
- Beta cell enzyme
 - 1st step of glycolysis
 - Found in liver and pancreas
 - Induced by insulin
 - Insulin promotes transcription
 - High Km (rate varies with glucose)
 - High Vm (can convert lots of glucose)

GLUT-2 Transporter
- Bidirectional glucose transporter
 - Found in liver, kidney, beta cells
 - Liver, kidney: Gluconeogenesis
 - Beta cells: Glucose in/out based on plasma levels
 - Also found in intestine, other tissues

Insulin Release
- Production inhibited by epinephrine
 - Beta-2 receptors: ↑ insulin
 - Alpha-2 receptors: ↓ insulin release
 - Alpha effect is dominant effect in pancreas
 - Fight or flight response → ↑ plasma glucose

Insulin Receptor
- Tetramer
 - Two α units
 - Two β units
 - Disulfide bonds
 - Step 1: Insulin Binding
 - Activates "Tyrosine Kinase" domains within receptor complex
 - "Tyrosine Kinase Receptor"

Insulin Receptor
- Step 2: Tyrosine Phosphorylation
 - Receptor phosphorylates itself
 - "Autophosphorylation"
RAS/MAP Kinase Pathway

- Insulin receptor can activate RAS
- G protein
- RAS can activate many growth pathways
 - Raf
 - MEK (mitogen-activated extracellular kinase)
 - MAP (mitogen-activated protein)
- Modify cell growth and gene expression

GLUT-4 Transporter

- Stored in vesicles in cells, especially muscle
- Insulin → PIK3 pathway → GLUT-4 Activation
- Major mechanism for increased glucose uptake
- Important muscle/fat
- Insulin exposure → GLUT-4 on surface

PIK3 Pathway

- Phosphatidylinositol 3–kinase Pathway
 - Catalyzes many intracellular processes
 - Glycogen formation
 - Fatty acid synthesis
 - GLUT-4 glucose transporter

RAS/ MAP Kinase Pathway

- Insulin receptor can activate RAS
 - G protein
 - RAS can activate many growth pathways
 - Raf
 - MEK (mitogen-activated extracellular kinase)
 - MAP (mitogen-activated protein)
 - Modify cell growth and gene expression
Insulin Receptor

Key Points
- Tetramer of α/β subunits with disulfide bridges
 - α: extracellular
 - β: transmembrane
- Insulin binding → **tyrosine kinase** activity
- Autophosphorylation of tyrosine residues
- PI3K Pathway → **GLUT-4 glucose transporter**
- RAS/MAP Kinase Pathway: growth/gene transcription

Insulin Dependent Organs

- Muscle and fat
 - Use GLUT-4 for glucose uptake
 - Depend on insulin (no insulin = no GLUT-4)

Insulin Independent Organs

- Brain and RBCs
 - Use GLUT-1 for glucose uptake
 - Not dependent on insulin
 - Takes up glucose when available
 - RBCs: No mitochondria (depend on glycolysis)
 - Brain: No fatty acid metabolism (glucose/ketones)
- Liver, kidney, intestines
 - Also insulin independent (GLUT-2)
- Other organs: nerves, lens

Insulin Effects

- **Fatty acid synthesis**
 - Activates acetyl-CoA carboxylase
- **Protein synthesis**
 - Stimulates entry of amino acids into cells → protein synthesis
 - Important for muscle growth
- Key side effect insulin therapy: weight gain

Hormone Sensitive Lipase

- Removes fatty acids from TAG in adipocytes
- Inhibited by **insulin**
- Activated by **glucagon** and **epinephrine**
Glucagon

- Protein hormone
- Single polypeptide chain
- Synthesized by alpha cells
- Opposes actions of insulin
- Main stimulus release: low plasma glucose

Glucagon Receptor

- G-protein receptor
- Activates adenylyl cyclase
- Increases cAMP
- Activates protein kinase A (PKA)

Insulin Effects

- Na⁺ retention
 - Increases Na⁺ resorption in the nephron
- Lowers potassium
 - Enhanced activity of Na-K-ATPase pump in skeletal muscle
 - Insulin plus glucose used in treatment of hyperkalemia
- Inhibits glucagon release

Glucagon

- Increases liver (not muscle) glycogen breakdown
 - Raises blood glucose level
 - Increases gluconeogenesis

Glucagon

- Increases amino acid uptake in liver
 - More carbon skeletons for glucose via gluconeogenesis
 - Plasma amino acid levels fall
 - Activates lipolysis via hormone sensitive lipase

Glucagon Receptor

- Glucagon receptors mostly in liver
 - Many activated processes occur in liver
 - Breakdown of glycogen to raise plasma glucose
 - Gluconeogenesis
 - Most other tissues have lower density than liver
 - Not found in skeletal muscle
Hypoglycemia

- Unconscious patient with hypoglycemia
- Treatment:
 - #1: IV dextrose
 - #2: Intramuscular glucagon
- Useful when IV access cannot be established
- Raises plasma glucose level

Beta Blocker Overdose

- Causes bradycardia and hypotension
- Drug of choice: **Glucagon**
 - Activates adenylyl cyclase
 - Different site from beta-adrenergic agents
 - Raises cAMP \(\rightarrow \) myocyte calcium
 - Same mechanism as beta stimulation (via Gs proteins)

Insulinoma

- Rare, pancreatic islet-cell tumor
- Occurs in adults (median age ~50 years)
- Key feature: fasting hypoglycemia
 - Insulin levels remain elevated when fasting
- "Neuroglycopenic symptoms"
 - Confusion, odd behavior
 - Sympathetic activation from low glucose
 - Palpitations, diaphoresis, tremor

Fasting Hypoglycemia

- Differential diagnosis
 - Exogenous insulin
 - Oral hypoglycemics (sulfonylureas \(\rightarrow \) insulin)
 - Insulinoma

<table>
<thead>
<tr>
<th></th>
<th>Exogenous Insulin</th>
<th>Insulinoma</th>
<th>Oral Hypoglycemics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulin</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>C-peptide</td>
<td>-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Hypoglycemic Agent Screen</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

Glucagonoma

- Rare pancreatic tumors
- Excess glucagon secretion
- Leads to glucose intolerance
 - Elevated fasting glucose levels
 - Rare to develop DKA (insulin function intact)
MEN Syndromes
• Multiple endocrine neoplasia
• Rare inherited disorders
• Numerous endocrine tumors
• **MEN Type 1**: Insulinomas/glucagonomas
 • 3 P’s: Pituitary, Parathyroid, and Pancreas
 • Mutations of **MEN1** tumor suppressor gene

Glucagonoma
• **Weight loss**
 • Liver gluconeogenesis
 • Consumption of proteins/amino acids
• **Necrolytic migratory erythema**
 • Red, blistering rash
 • Itchy, painful
 • Fluctuates in severity
 • Genitals, buttocks, groin
 • Key clinical scenario: new diabetes and rash

Glucagonoma
• Diagnosis: ↑ plasma glucagon level
• Treatment: **somatostatin analogs** (octreotide)
 • Inhibit glucagon secretion
 • Improves symptoms

Glucagonoma
• Weight loss
• Liver gluconeogenesis
• Consumption of proteins/amino acids
• Necrolytic migratory erythema
 • Red, blistering rash
 • Itchy, painful
 • Fluctuates in severity
 • Genitals, buttocks, groin
 • Key clinical scenario: new diabetes and rash

Glucagonoma
• Weight loss
• Liver gluconeogenesis
• Consumption of proteins/amino acids

MEN Syndromes
• Multiple endocrine neoplasia
• Rare inherited disorders
• Numerous endocrine tumors
• **MEN Type 1**: Insulinomas/glucagonomas
 • 3 P’s: Pituitary, Parathyroid, and Pancreas
 • Mutations of **MEN1** tumor suppressor gene
Diabetes

Hemoglobin A1C

• Small fraction of hemoglobin is “glycated”
• Glucose combines with alpha/beta chains
• Subfraction HbA1c used in diabetes
• Non-enzymatic glycation of beta-chains
• Occurs at amino-terminal valines

Diabetes Diagnosis

• Symptoms
 • Symptoms plus glucose >200mg/dl = diabetes
 • Asymptomatic
 • Fasting blood glucose level (no food for 8 hours)

<table>
<thead>
<tr>
<th>State</th>
<th>Fasting plasma glucose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td><100mg/dl</td>
</tr>
<tr>
<td>Pre-diabetes</td>
<td>100 to 125mg/dl</td>
</tr>
<tr>
<td>Diabetes</td>
<td>>=126mg/dl</td>
</tr>
</tbody>
</table>

Terminology

• Diabetes Mellitus
 • Mellitus = sweet
 • Common disorder of blood glucose
• Diabetes insipidus
 • Insipid = lacking flavor
 • Rare disorder of low ADH activity
• Both can cause polyuria, polydipsia
• Completely different mechanisms

Diabetes Symptoms

• Often asymptomatic
 • “Silent killer”
 • Often no symptoms until complications develop
 • Basis for screening
• Classic hyperglycemia symptoms
 • Polyuria (osmotic diuresis from glucose)
 • Polydipsia (thirst to replace lost fluids)

Diabetes

Jason Ryan, MD, MPH

Chronic disorder of elevated blood glucose levels
• Caused by:
 • Insufficient insulin
 • Insufficient response to insulin (“insulin resistance”)
 • Both
Diabetic Ketoacidosis (DKA)

- Life-threatening complication of diabetes
- More common type 1
- Common initial presentation type 1
- Often precipitated by infection/trauma
- Can occur when type 1 diabetic skips insulin therapy

Type 1 Diabetes

- Mostly a childhood disorder
- Bimodal distribution
- Peak at 4-6 years
- 2nd peak 10 to 14 years of age
- Often presents with symptomatic hyperglycemia
 - Polyuria
 - Polydipsia
 - Glucose in urine
- Treatment: Insulin
Diabetic Ketoacidosis

Treatment
- **Insulin**
 - Lowers blood glucose levels
 - Shifts potassium into cells
- **IV fluids**
 - Treats dehydration

Clinical Presentation
- Arrhythmias (hyperkalemia)
- Cerebral edema
- Mechanism poorly understood
- Common cause of death in children with DKA

Phosphate
- Risk of hypophosphatemia
 - Acidosis → shifts phosphate to extracellular fluid
 - Phosphaturia caused by osmotic diuresis
 - Loss of ATP
 - Muscle weakness (respiratory failure)
 - Heart failure (↓ contractility)

Mucormycosis
- Fungal infection
- Caused by *Rhizopus* sp. and *Mucor* sp.
- Classically starts in sinuses
- Spreads to adjacent structures
- Thrives in high glucose, ketoacidosis conditions
- Classic complication of DKA
 - Patient with DKA
 - Fever, headache, eye pain

Diabetic Ketoacidosis

Clinical Presentation
- Abdominal pain/nausea/vomiting
- Dehydration
- Hyperglycemia
- Hyperkalemia
- Elevated plasma/urine ketones
- Glucose in urine
- Anion gap metabolic acidosis
 - Kussmaul breathing: deep, labored breathing
 - Hyperventilation to blow off CO2 and raise pH
 - Fruity smell on breath

Phosphate
- Risk of hypophosphatemia
 - Acidosis → shifts phosphate to extracellular fluid
 - Phosphaturia caused by osmotic diuresis
 - Loss of ATP
 - Muscle weakness (respiratory failure)
 - Heart failure (↓ contractility)

Mucormycosis
- Fungal infection
- Caused by *Rhizopus* sp. and *Mucor* sp.
- Classically starts in sinuses
- Spreads to adjacent structures
- Thrives in high glucose, ketoacidosis conditions
- Classic complication of DKA
 - Patient with DKA
 - Fever, headache, eye pain
Diabetic Ketoacidosis

Treatment
- Careful monitoring potassium
 - Total body potassium is low despite hyperkalemia
 - Insulin shifts into cells → can lead to hypokalemia
 - Usually need to administer potassium
- Careful monitoring glucose
 - Continue insulin until acidosis resolves
 - Often add glucose while insulin infusion continues

Type 2 Diabetes

Risk Factors
- Major risk factor: Obesity
 - Central or abdominal obesity carries greatest risk
 - Intra-abdominal (visceral) fat > subcutaneous fat
 - Visceral fat breakdown less inhibited by insulin
 - More lipolysis → more free fatty acids
 - Decreased glucose transport into cells
 - "Apple shape" worse than "pear shape"
 - Apple shape due to increased visceral adipose tissue
 - More subcutaneous adipose tissue in pear shape
 - Weight loss improves glucose levels

Type 2 Diabetes

Risk Factors
- Family history
 - Strong genetic component (more than type I)
 - Any first degree relative with T2DM: ↑ 2-3x risk
- Insulin resistance
 - Muscles, adipose tissue, liver
 - Reduced response to insulin → hyperglycemia
 - Pancreas responds with ↑ insulin
 - Eventually pancreas can fail → ↓ insulin

Diabetic Ketoacidosis

Treatment
- Careful monitoring potassium
 - Total body potassium is low despite hyperkalemia
 - Insulin shifts into cells → can lead to hypokalemia
 - Usually need to administer potassium
- Careful monitoring glucose
 - Continue insulin until acidosis resolves
 - Often add glucose while insulin infusion continues

Type 2 Diabetes

Risk Factors
- Most common form of diabetes
 - Common in adults
 - Prevalence is rising
 - Also becoming more common among children

Type 2 Diabetes

Risk Factors
- Insulin resistance
 - Muscle, adipose tissue, liver
 - Reduced response to insulin → hyperglycemia
 - Pancreas responds with ↑ insulin
 - Eventually pancreas can fail → ↓ insulin

Diabetic Ketoacidosis

Treatment
- Careful monitoring potassium
 - Total body potassium is low despite hyperkalemia
 - Insulin shifts into cells → can lead to hypokalemia
 - Usually need to administer potassium
- Careful monitoring glucose
 - Continue insulin until acidosis resolves
 - Often add glucose while insulin infusion continues

Type 2 Diabetes

Risk Factors
- Major risk factor: Obesity
 - Central or abdominal obesity carries greatest risk
 - Intra-abdominal (visceral) fat > subcutaneous fat
 - Visceral fat breakdown less inhibited by insulin
 - More lipolysis → more free fatty acids
 - Decreased glucose transport into cells
 - "Apple shape" worse than "pear shape"
 - Apple shape due to increased visceral adipose tissue
 - More subcutaneous adipose tissue in pear shape
 - Weight loss improves glucose levels

Type 2 Diabetes

Risk Factors
- Family history
 - Strong genetic component (more than type I)
 - Any first degree relative with T2DM: ↑ 2-3x risk
Diabetic Complications

- Chronic hyperglycemia → complications
 - Cardiac disease
 - Renal failure
 - Neuropathy
 - Blindness
- Two key underlying mechanisms
 - Non-enzymatic glycation
 - Sorbitol accumulation

Acanthosis Nigricans

- Hyperpigmented plaques on skin
- Intertriginous sites (folds)
- Classically neck and axillae
- Associated with insulin resistance
 - Often seen obesity, diabetes
 - Rarely associated with malignancy
 - Gastric adenocarcinoma most common

HHS - Hyperglycemic Hyperosmolar Syndrome

- Life-threatening complication of diabetes
- More common type 2
- High glucose → diuresis
 - Markedly elevated glucose (can be >1000)
- Severe dehydration
- Different from DKA
 - Few or no ketone bodies (insulin present)
 - Usually no acidosis
 - Very high serum osmolarity → CNS dysfunction

Type 2 Diabetes

- Histology
 - Classic finding is amyloid in pancreatic islets
 - Amylin peptide normally made by beta cells
 - Precise function not known
 - Packaged and secreted with insulin
 - Pramlintide: amylin analog used for diabetes treatment
- Type 2 Diabetes
 - Classical finding is amyloid in pancreatic islets
 - Amylin peptide normally made by beta cells
 - Precise function not known
 - Packaged and secreted with insulin
 - Pramlintide: amylin analog used for diabetes treatment
 - Accrulates in islets in patients with type 2 diabetes

Insulin Resistance Mechanism

- Reason for insulin resistance not known
- Many data suggest insulin receptor abnormalities
- Fatty acids may activate serine-threonine kinases
 - Phosphorylate amino acids on beta chain of insulin receptors
 - Inhibiting tyrosine phosphorylation
- TNF-α may be synthesized by adipocytes
 - TNF-α can activate serine-threonine kinases

Serine

Threonine
Proteinuria in Diabetics

- Annual screening for albumin in urine
- Evidence of protein is indication for ACE-inhibitor
- ACEi shown to reduce progression to ESRD
- Potential mechanism is dilation of efferent arteriole
- Reduction in hyperfiltration

Renal Arterioles

- Hyaline arteriosclerosis
 - Thickening of arterioles
 - Also seen in HTN
 - Can result from AGEs
 - Crosslinking of collagen
 - Commonly occurs in kidneys of diabetics
 - Can involve afferent AND efferent arteriole
 - Afferent arteriole: Ischemia
 - Efferent arteriole: Hyperfiltration
 - Efferent arteriosclerosis rarely seen except in diabetes

Non-enzymatic Glycation

- Glucose added to amino groups on proteins
- No enzyme required
- Driven by high glucose levels
- Leads to crosslinked proteins
- "Advanced glycosylation end products" (AGEs)

Diabetic Kidney Disease

- AGEs → damage to glomerulus and arterioles
- Leads to end stage kidney disease in many diabetics

Atherosclerosis

- AGEs trap LDL in large vessels → atherosclerosis
- Coronary artery disease
 - Angina, myocardial infarction
- Stroke/TIA
- Peripheral vascular disease
 - Claudication
 - Arterial ulcers
 - Poor wound healing
 - Gangrene

Diabetic Kidney Disease

Diabetic Microangiopathy

- AGEs

Renal Failure

Hyperfiltration

Albuminuria

Diabetic Kidney Disease

Diabetic Microangiopathy

- AGEs → damage to glomerulus and arterioles
- Leads to end stage kidney disease in many diabetics

Proteinuria in Diabetics

- Annual screening for albumin in urine
- Evidence of protein is indication for ACE-inhibitor
- ACEi shown to reduce progression to ESRD
 - Potential mechanism is dilation of efferent arteriole
 - Reduction in hyperfiltration
Glomerular Basement Membranes

- AGEs \rightarrow diffuse baseline membrane thickening
- Visible on electron microscopy
- Can lead to mesangial proliferation in glomeruli
- End result is glomerulosclerosis

Kimmelstiel-Wilson Nodules

- Hallmark of nodular sclerosis of diabetes
- Pathognomonic of diabetic kidney disease

Glomerulosclerosis

- Diffuse glomerulosclerosis
 - Deposits of proteins (collagen IV)
 - Diffuse on basement membranes of glomeruli capillary loops
 - Mesangial cell proliferation
 - Also occurs with aging and hypertension
 - If severe \rightarrow nephrotic syndrome
- Nodular glomerulosclerosis
 - Nodules form in periphery of glomerulus in mesangium
 - Rarely occurs except in diabetes
 - Can lead to fibrosis/scarring of entire kidney

Sorbitol Accumulation

Polyol Pathway

- Little activity at physiologic glucose levels
- Chronic hyperglycemia can lead to \uparrow sorbitol
- Sorbitol is osmotic agent
- Draws in fluid \rightarrow osmotic damage
- Likely involved in many diabetic complications
 - Cataracts
 - Neuropathy

Cataracts

- Sorbitol accumulates in lens
- \uparrow osmolarity
- Fluid into lens
- Opacification over time
Diabetic Retinopathy

- Findings
 - Microaneurysms, Hemorrhages
 - Loss of pericytes
 - Excavates
 - Leakage proteins, lipids
 - Cotton-wool spots
 - Nerve infarctions
 - Occlusion of precapillary arterioles
 - Vessel proliferation (*proliferative retinopathy*)
 - Retinal ischemia → new vessel growth
 - "Neovascularization"

- Prevention: Regular foot exams

<table>
<thead>
<tr>
<th>DrGnu/Wikipedia</th>
<th>DrGnu/Wikipedia</th>
</tr>
</thead>
</table>

Diabetic Foot Disease

- Neuropathy + ischemia can lead to:
 - Ulcers
 - Infection
 - Amputation
 - Made worse by poor wound healing from PVD

- Prevention: Regular foot exams

<table>
<thead>
<tr>
<th>DrGnu/Wikipedia</th>
<th>DrGnu/Wikipedia</th>
</tr>
</thead>
</table>

Neuropathy

- Sorbitol can accumulate in Schwann cells
 - Myelinating cells of peripheral nerves
 - Osmotic damage → neuropathy

- Classically causes "stocking-glove" sensory loss
 - Longest axons affected most
 - Often feet/legs
 - Worse distally; better proximally
 - Loss of vibration sense, proprioception
 - Impairment of pain, light touch, temperature
 - Autonomic neuropathy
 - Postural hypotension
 - Delayed gastric emptying

Diabetes Complications

- Atherosclerosis
- Diabetic Kidney Disease
- Retinopathy
- Neuropathy

<table>
<thead>
<tr>
<th>Blausen gallery 2014</th>
<th>Blausen gallery 2014</th>
</tr>
</thead>
</table>

Diabetic Retinopathy

- Can cause blindness among diabetics
- Multiple factors likely involved:
 - Capillary basement membrane thickening (AGEs)
 - Hyaline arteriosclerosis
- Pericyte degeneration
 - Cells that wrap capillaries
 - Evidence of sorbitol accumulation
 - Microaneurysms
 - Rupture → hemorrhage
 - Annual screening for prevention

Neuropathy

- Sorbitol can accumulate in Schwann cells
 - Myelinating cells of peripheral nerves
 - Osmotic damage → neuropathy

<table>
<thead>
<tr>
<th>DrGnu/Wikipedia</th>
<th>DrGnu/Wikipedia</th>
</tr>
</thead>
</table>

Neuropathy

- Classically causes "stocking-glove" sensory loss
 - Longest axons affected most
 - Often feet/legs
 - Worse distally; better proximally
 - Loss of vibration sense, proprioception
 - Impairment of pain, light touch, temperature
 - Autonomic neuropathy
 - Postural hypotension
 - Delayed gastric emptying

Diabetic Foot Disease

- Neuropathy + ischemia can lead to:
 - Ulcers
 - Infection
 - Amputation
 - Made worse by poor wound healing from PVD

- Prevention: Regular foot exams

<table>
<thead>
<tr>
<th>DrGnu/Wikipedia</th>
<th>DrGnu/Wikipedia</th>
</tr>
</thead>
</table>

Neuropathy

- Sorbitol can accumulate in Schwann cells
 - Myelinating cells of peripheral nerves
 - Osmotic damage → neuropathy

- Classically causes "stocking-glove" sensory loss
 - Longest axons affected most
 - Often feet/legs
 - Worse distally; better proximally
 - Loss of vibration sense, proprioception
 - Impairment of pain, light touch, temperature
 - Autonomic neuropathy
 - Postural hypotension
 - Delayed gastric emptying
Type 1 versus Type 2

<table>
<thead>
<tr>
<th>Pathophysiology</th>
<th>Type 1</th>
<th>Type 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Islet cells</td>
<td>Less</td>
<td>Insulin Resistance</td>
</tr>
<tr>
<td>Insulin</td>
<td>Low</td>
<td>High then low</td>
</tr>
<tr>
<td>Biopsy</td>
<td>Insulin in</td>
<td>Amyloid</td>
</tr>
<tr>
<td>Age</td>
<td>Children</td>
<td>Adults</td>
</tr>
<tr>
<td>Genetic Predisposition</td>
<td>Weaker</td>
<td>Stronger</td>
</tr>
<tr>
<td>Complications</td>
<td>DKI</td>
<td>HRS</td>
</tr>
</tbody>
</table>
Insulin

Type 1 and Type 2

- Type 1 diabetes treated mainly with insulin
- Type 2 diabetes: oral or SQ drugs +/- insulin
 - Initial stages: Oral and/or SQ drugs
 - Advanced disease: Insulin

Insulin Hexamers

- Insulin forms hexamers in the body
 - Six insulin molecules linked
 - Stable structure
 - Insulin usually administered subcutaneously
 - Activity related to speed of absorption
 - Insulin hexamers → slower onset of action
 - Insulin monomers → faster onset of action

Rapid Acting Insulin

- Modified human insulin
- Contain insulin with modified amino acids
- **Reduced hexamer/polymer formation**
- Rapid absorption, faster action, shorter duration
 - Onset: 15 minutes
 - Peak: 1 hour
 - Duration: 2 to 4 hours
- Often used **pre-meal**

Insulin

- Many different types available for diabetes therapy
- All vary by **time to peak** and **duration of action**
- Also vary by peak effect

- Rapid Acting Insulin
- Regular Insulin
- NPH Insulin
- Detemir
- Glargine

- Fast Peak: Short Duration
- Slow Peak: Long Duration

Insulin

- Jason Ryan, MD, MPH

- Jason Ryan, MD, MPH

- Isaac Yonemoto /Wikipedia
Regular Insulin

- Synthetic analog of human insulin
- Made by recombinant DNA techniques
- Onset: 30 minutes
- Peak: 2 to 3 hours
- Duration: 3 to 6 hours

NPH Insulin

- Regular insulin combined with neutral protamine
- Slows absorption
- Peak: 4-8 hours
- Duration: 12-16 hours

Regular Insulin

- Commonly used in hospitalized patients
 - Blood sugar elevations common with infection/surgery
 - Sliding scale dose given based on finger stick blood sugar
 - “Regular insulin sliding scale”
 - Only type of insulin that is given IV
 - IV regular insulin used in DKA/HHS
 - Used to treat hyperkalemia
 - Given IV with glucose to prevent hypoglycemia

Regular Insulin

- Made by recombinant DNA techniques
- Onset: 30 minutes
- Peak: 2 to 3 hours
- Duration: 3 to 6 hours

Insulin

- Insulin with modified amino acid structure
- Soluble in acidic solution for dosing
- Precipitates at body pH after SQ injection
- Insulin molecules slowly dissolve from crystals
- Low, continuous level of insulin
- Onset: 1–1.5 hours
- Duration: 11–24 hours
- Often given once daily

Glargine

- Insulin with modified amino acid structure
- Soluble in acidic solution for dosing
- Precipitates at body pH after SQ injection
- Insulin molecules slowly dissolve from crystals
- Low, continuous level of insulin
- Onset: 1–1.5 hours
- Duration: 11–24 hours
- Often given once daily
Hypoglycemia

- Major side effect of all insulin regimens
- Tremor, palpitations, sweating, anxiety
- If severe: seizure, coma
- Always check blood sugar in unconscious patients
- Dosages, frequency adjusted to avoid low glucose

Insulin Analogs

- Do not contain human insulin molecules
- Modified insulin structure
 - Rapid acting, Detemir, Glargine
 - Regular insulin, NPH
 - Contain human insulin molecules
 - Regular: made by recombinant techniques
 - NPH: Regular added to neutral protamine to slow absorption

Insulin

- Rapid-acting
 - Pre-meal
- Regular
 - Sliding scale
 - IV for treatment of DKA, hyperkalemia
- NPH, Glargine, Detemir
 - Often given as background therapy

Detemir

- Insulin with fatty acid side chain added
- Slow rate of absorption
 - Aggregation in subcutaneous tissue
 - Also binds reversibly to albumin
- Onset: 1–2 hours
- Duration: > 12 hours
 - Usually given once or twice daily
 - May cause less weight gain

Insulin

- Rapid-acting
- Pre-meal
- Regular
 - Sliding scale
 - IV for treatment of DKA, hyperkalemia
- NPH, Glargine, Detemir
 - Often given as background therapy
Weight Gain

- Occurs in most patients on insulin
- Insulin promotes fatty acid and protein synthesis
Treatment of Diabetes

Type 1 and Type 2

- Type 1 diabetes treated mainly with insulin
- Type 2 diabetes: oral or SQ drugs +/- insulin
 - Initial stages: Oral and/or SQ drugs
 - Advanced disease: Insulin

Hemoglobin A1C

- Used to monitor therapy
- Too high = ↑ complications
- Too low = Risk of hypoglycemia
- Goal of ≤7.0% often used in many patients

Lifestyle Modifications

- Newly diagnosed type 2 diabetes
 - Weight loss, exercise improve glucose levels
 - First line treatment usually lifestyle modification
 - Usually a 3-6 month trial if initial A1c not markedly ↑

Oral/SQ Antidiabetic Agents

- Biguanides (Metformin)
- Sulfonylureas/Meglitinides
- Glitazones
- Glucosidase Inhibitors
- Amylin Analogs
- GLP-1 Analogs
- DPP-4 Inhibitors
- SGLT2 inhibitors

Biguanides

- Metformin
 - Oral therapy
 - Exact mechanism unknown
 - Primary effect: ↓ hepatic glucose production
 - Inhibits gluconeogenesis
Biguanides
Metformin

- **Lactic Acidosis**
 - Almost always occurs associated with:
 - Renal insufficiency
 - Liver disease or alcohol abuse
 - Acute heart failure
 - Hypoxia
 - Serious acute illness
 - Metformin not used in patients with low GFR
 - Often "held" when patients acutely ill
 - Also held during IV contrast tests

- **Biguanides**
 - **Metformin**
 - Rarely can cause **lactic acidosis**
 - Exact mechanism unclear/controversial
 - Metformin can increase conversion of glucose to lactate
 - Beneficial for lowering glucose levels
 - Too much \(\rightarrow \) lactic acidosis
 - Can be life threatening

- **Biguanides**
 - **Metformin**
 - **Other effects**
 - Reduced glucose absorption from GI tract
 - Direct stimulation of glycolysis in tissues \(\rightarrow \) glucose uptake
 - Reduced glucagon levels
 - Leads to \(\uparrow \) **insulin effect** (insulin sensitivity)
 - Insulin levels fall slightly on therapy

- **Biguanides**
 - **Metformin**
 - Usually 1st line in type 2 diabetes
 - Associated with weight loss
 - Rarely causes hypoglycemia (unlike insulin/sulfonylureas)
 - Does not depend on beta cells
 - Can be given to patients with advanced diabetes

- **Biguanides**
 - **Metformin**
 - **Lowers serum free fatty acids**
 - ↓ substrates for gluconeogenesis
 - ↓ triglycerides
 - Small ↓ LDL
 - Small ↑ HDL

- **Biguanides**
 - **Metformin**
 - **Other effects**
 - Reduced glucose absorption from GI tract
 - Direct stimulation of glycolysis in tissues \(\rightarrow \) glucose uptake
 - Reduced glucagon levels
 - Leads to \(\uparrow \) **insulin effect** (insulin sensitivity)
 - Insulin levels fall slightly on therapy

- **Biguanides**
 - **Metformin**
 - **Lowers serum free fatty acids**
 - ↓ substrates for gluconeogenesis
 - ↓ triglycerides
 - Small ↓ LDL
 - Small ↑ HDL
Meglitinides

- Repaglinide, Nateglinide
- Oral therapy
- Different chemical structure from sulfonylureas
- Similar mechanism
 - Close K⁺ channels in beta cells → ↑ insulin secretion
- Short acting
- Given prior to meals
- Major side effect is hypoglycemia
- No sulfur → can be used in sulfa allergy

Sulfonylureas

- Oral drugs
- Each generation more potent
- ↓ dosage used → ↓ side effects
- First generation
 - Tolbutamide, Chlorpropamide, Tolazamide
- Second generation
 - Glyburide, glipizide
- 3rd generation: Glimepiride

Adverse Effects

- Hypoglycemia is the most common side effect
- Glucagon levels fall (unclear mechanism)
- May occur with exercise or skipping meals

Sulfonylureas

- Can also cause weight gain
 - More insulin release
 - Insulin causes weight gain

Meglitinides

- Repaglinide, Nateglinide
 - Oral therapy
 - Different chemical structure from sulfonylureas
 - Similar mechanism
 - Close K⁺ channels in beta cells → ↑ insulin secretion
 - Short acting
 - Given prior to meals
 - Major side effect is hypoglycemia
 - No sulfur → can be used in sulfa allergy

Sulfonylureas

- Bind to sulfonylurea receptor in pancreas
- Associated with ATP-dependent K⁺ channel in beta cells
- Sulfonylureas close K⁺ channels in beta cells
- Changes resting potential
- Results in depolarization (Ca influx)
- More sensitive to glucose/amino acids
- ↑ insulin release (“insulin secretagogues”)
Thiazolidinediones (TZDs)
Pioglitazone, Rosiglitazone
- Oral therapy
- Decreases insulin resistance

Thiazolidinediones
Potential mechanisms
- GLUT-4
 - Glucose transporter
 - Transcription upregulated
- Adiponectin
 - Adipocyte secretory protein
 - ↑ Insulin sensitivity via several mechanisms
 - Signaling may lead to improved glucose levels
- Antagonism of TNF alpha insulin resistance
 - TNF-α levels fall

Thiazolidinediones
Adverse Effects
- Weight gain
 - May cause proliferation of adipocytes
 - Also lead to fluid retention
- Risk of hepatotoxicity
 - Troglitazone removed from market due to liver failure

Thiazolidinediones
(Pioglitazone, Rosiglitazone)
- Act on PPAR-γ receptors
 - Nuclear receptor
 - Highest levels in adipose tissue
 - Also found in muscle, liver, other tissues
 - Modulate expression of genes
 - TZDs bind PPAR-gamma
 - TZD-PPAR bind retinoid X receptors (RXR)
 - Complex modifies gene transcription

NOTE: Fibrates activate PPAR-α
Lower triglycerides

Glucosidase Inhibitors
Acarbose, Miglitol, Voglibose
- Competitive inhibitors of intestinal α-glucosidases
 - Sucrase, maltase, glucoamylase, dextranase
 - Enzymes of brush border of intestinal cells
 - Hydrolyze starches, oligosaccharides, disaccharides
 - Slows absorption of glucose
 - Less absorption upper small intestine
 - More in distal small intestine

Edema
- Occurs in ~5% patients
- Due to PPAR-γ effects in nephron → ↑ Na retention
- Risk of pulmonary edema
- Not used in patients with advanced heart failure

Adverse Effects
- Oral therapy
- Decreases insulin resistance

Edema
- Occurs in ~5% patients
- Due to PPAR-γ effects in nephron → ↑ Na retention
- Risk of pulmonary edema
- Not used in patients with advanced heart failure
DPP-4 Inhibitors

- Sitagliptin, Linagliptin
- DPP-4: Dipeptidyl peptidase 4
- Enzyme expressed on many cells
- Inhibits release of GIP and GLP-1
- Inhibition → ↑ GLP-1
- Oral drugs, once a day
- Side effects: Infections
- Reports of urinary and respiratory infections

GLP-1 Analogs

- Exenatide, Liraglutide
- Exenatide: Usually given SQ prior to meals
- Once weekly version available
- Liraglutide: SQ once daily
- GI side effects: nausea, vomiting, diarrhea

Amylin Analogs

- Pramlintide
- Amylin: protein stored in beta cells
- Co-secreted with insulin
- Several effects (mechanisms poorly understood)
 - Suppresses glucagon release
 - Delays gastric emptying
 - Reduces appetite
 - Allows insulin to work more effectively

Incretins

- Hormones that ↑ insulin secretion
- GIP (glucose-dependent insulinotropic peptide)
 - Produced by K cells of small intestine
 - Stimulates insulin release (similar to GIP)
 - Also blunts glucagon release, slows gastric emptying
 - Oral glucose metabolized faster than IV glucose

Amylin Analogs

- Pramlintide
 - Given SQ with meals
 - Always given with insulin (type 1 or type 2)
 - Hypoglycemia may result → need to ↓ insulin dose
 - Can also cause nausea

Glucosidase Inhibitors

- Acarbose, Miglitol, Voglibose
 - Taken orally before meals
 - Less spike in glucose after meals
 - Lowers mean glucose level → lowers A1c
 - Less insulin used ("insulin sparing")
 - Main side effect: GI upset
 - Flatulence
 - Diarrhea

GLP-1 Analogs

- Exenatide, Liraglutide
- Exenatide: Usually given SQ prior to meals
- Once weekly version available
- Liraglutide: SQ once daily
- GI side effects: nausea, vomiting, diarrhea

Amylin Analogs

- Pramlintide
- Amylin: protein stored in beta cells
- Co-secreted with insulin
- Several effects (mechanisms poorly understood)
 - Suppresses glucagon release
 - Delays gastric emptying
 - Reduces appetite
 - Allows insulin to work more effectively
SGLT2 Inhibitors
Canagliflozin, Dapagliflozin

- SGLT2
 - Expressed in proximal tubule
 - Reabsorbs ~90% percent filtered glucose
 - Inhibition → loss of glucose in urine
 - Lowers glucose levels
 - Also causes mild osmotic diuresis

Proximal Tubule

SGLT2 Inhibitors
Canagliflozin, Dapagliflozin

- Oral drugs taken once daily
- Lead to mild weight loss
- May improve outcomes in heart failure
- Adverse effects
 - Vulvovaginal candidiasis
 - UTIs
- Not recommended with advanced renal disease

Diabetes Therapy
Helpful Tips

- Renal failure: Avoid metformin (lactic acidosis)
- Advanced heart failure
 - Avoid TZDs (fluid retention)
 - Avoid metformin (lactic acidosis)
- Insulin generally safe with any comorbidity

SGLT2 Inhibitors
Canagliflozin, Dapagliflozin

- SGLT2
 - Expressed in proximal tubule
 - Reabsorbs ~90% percent filtered glucose
 - Inhibition → loss of glucose in urine
 - Lowers glucose levels
 - Also causes mild osmotic diuresis

Proximal Tubule

SGLT2 Inhibitors
Canagliflozin, Dapagliflozin

- Oral drugs taken once daily
- Lead to mild weight loss
- May improve outcomes in heart failure
- Adverse effects
 - Vulvovaginal candidiasis
 - UTIs
- Not recommended with advanced renal disease

Diabetes Therapy
Helpful Tips

- Renal failure: Avoid metformin (lactic acidosis)
- Advanced heart failure
 - Avoid TZDs (fluid retention)
 - Avoid metformin (lactic acidosis)
- Insulin generally safe with any comorbidity
Reproductive Hormones

SHBG
Sex Hormone Binding Globulins
- Glycoproteins
- Produced by the liver
- Binds androgens more than estrogens

A > E
Estrogen Amplification

- Free hormones → clinical effects
- ↑ SHBG → ↓ free androgens and estrogens
 - More effect on androgens
 - ↑ ratio estrogens to androgens
- "Amplification" of estrogen effects

Cirrhosis

- ↑ estrogen effects
 - Gynecomastia
 - Spider nevi
 - Palmar erythema
 - Testicular atrophy
 - Impotence
- ↑ SHBG → ↑ estrogen effects
- Clinical features of Testosterogens/androgens

Puberty

- FSH and LH are low before puberty
- Rise at puberty in boys and girls

GNRH

Gonadotropin-releasing hormone

- Peptide produced by hypothalamus
- Released in pulses ("pulsatile")
 - Frequency and amplitude of pulses varies
 - Changes effect release of LH/FSH from pituitary

Reproductive Hormones

- Hypothalamus: GnRH
- Pituitary:
 - Follicle stimulating hormone
 - Luteinizing Hormone
- Testes/Ovaries
 - Androgens/estrogens

Cirrhosis

- ↑ estrogen effects
- Gynecomastia
- Spider nevi
- Palmar erythema
- Testicular atrophy
- Impotence
- Altered metabolism/excretion → ↑ estrogen
- ↑ SHBG → ↑ estrogen effects
- Clinical features of ↑estrogens/↓androgens

SHBG

Sex Hormone Binding Globulins

<table>
<thead>
<tr>
<th>SHBG</th>
<th>LSHBG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Causes</td>
<td>Estrone</td>
</tr>
<tr>
<td>Hypothyroidism</td>
<td>↑ Estrogen effects</td>
</tr>
<tr>
<td>Nephrotic Syndrome</td>
<td>Clinical Effects</td>
</tr>
</tbody>
</table>

Estrogen Amplification

- Free hormones → clinical effects
- ↑ SHBG → ↓ free androgens and estrogens
 - More effect on androgens
 - ↑ ratio estrogens to androgens
- "Amplification" of estrogen effects

Gonadotropin-releasing hormone

- Peptide produced by hypothalamus
- Released in pulses ("pulsatile")
 - Frequency and amplitude of pulses varies
 - Changes effect release of LH/FSH from pituitary

Estrogen Amplification

- Free hormones → clinical effects
- ↑ SHBG → ↓ free androgens and estrogens
 - More effect on androgens
 - ↑ ratio estrogens to androgens
- "Amplification" of estrogen effects

Gonadotropin-releasing hormone

- Peptide produced by hypothalamus
- Released in pulses ("pulsatile")
 - Frequency and amplitude of pulses varies
 - Changes effect release of LH/FSH from pituitary
Kallmann Syndrome

- Absence of GnRH secretion from hypothalamus
- Impaired migration of GnRH neurons from origin in olfactory bulb to hypothalamus
- Almost always occurs in males (5:1 ratio)
- Key features: hypogonadism and anosmia
- Low GnRH/FSH/LH/Testosterone
- Delayed puberty
- Small testes

Leuprolide

- GnRH agonists
 - Derived from GnRH
 - D-amino acid substitution for native L-amino acid
 - Resistant to degradation
 - ↑ half-life → occupies receptors for prolonged period of time

Leuprolide

- Uses
 - Pulsatile (rarely done)
 - Stimulation of LH/FSH release
 - Administered by infusion pump
 - Dose varies about every 90 minutes
 - Used to create LH surge for ovulation (infertility)

Leuprolide

- Initial binding can stimulate LH/FSH release
- Chronic treatment → ↓ LH/FSH
- Down-regulation of GnRH receptor
- Pituitary desensitization
- Suppresses ovarian follicular growth and ovulation
- Low levels of estradiol and progesterone
 - Similar to menopause

GnRH

- Gonadotropin-releasing hormone
- Gq protein system with IP3 second messenger
- PIP2 = Phosphatidylinositol bisphosphate
- IP3 = Inositol trisphosphate
- DAG = Diacylglycerol

Eak435s /Wikipedia
Pituitary Reproductive Hormones

- LH, FSH
- Proteins
- LH, FSH, TSH and HCG are "heterodimers"
 - Dimer = two molecules; hetero = different
- Two chains: α and β
- Same α, different β

Pituitary Hormones

- All have a **cAMP second messenger system**
- ATP → cAMP → Effects
Male Reproductive Hormones

Estradiol

- Testosterone also converted to estradiol
- Occurs in adipose tissue and Leydig cells
- Enzyme: Aromatase
- Some testosterone effects mediated by estradiol

Testosterone

Aromatase

Estradiol (17β-estradiol)

Finasteride

- 5-α reductase inhibited by finasteride
- Used for treatment of prostatic hyperplasia
- Also used to treat hair loss in men

Testosterone

Dihydrotestosterone (DHT)

5-α reductase

Finasteride

Testosterone

Androstenedione

Cholesterol

DHEA

Adrenal Cortex

Leydig Cell

Testosterone

Dehydroepiandrosterone (DHEA)

Androstenedione

Dihydrotestosterone (DHT)

5-α reductase

Testosterone

Dihydrotestosterone (DHT)

Estradiol

- Testosterone also converted to estradiol
- Occurs in adipose tissue and Leydig cells
- Enzyme: Aromatase
- Some testosterone effects mediated by estradiol

Testosterone

Aromatase

Estradiol (17β-estradiol)
Testosterone Effects

Males

- **Leydig cells**
 - Testosterone → Effects
 - Testosterone → Dihydrotestosterone (DHT) → Estradiol (17β-estradiol) → Effects

Fetus

- Development of testes requires Y chromosome
 - SRY *gene* produces testis determining factor
 - All males (XY) born with testes
 - "Chromosomal sex" determined by XX/XY
 - Internal/external genitalia requires hormones

Leydig cells

- **Testosterone**
 - Estradiol (17β-estradiol)
 - Dihydrotestosterone (DHT)

Males

- Different effects on different growth stages
 - Fetus
 - Puberty
 - Adult

Testosterone Effects

Fetus

- **Development of testes requires Y chromosome**
 - SRY *gene* produces testis determining factor
 - All males (XY) born with testes
 - "Chromosomal sex" determined by XX/XY
 - Internal/external genitalia requires hormones

Testosterone Effects

Fetus

- **Testes**
 - Sertoli cells
 - Spermatogonia

Testosterone

- **Estradiol**
 - **(17β-estradiol)**
 - **Dihydrotestosterone (DHT)**

5-α Reductase Deficiency

- Autosomal recessive disorder of sexual development
- 46,XY male able to make testosterone, not DHT
5-α Reductase Deficiency

- Normal internal genitalia
 - Normal epididymis, vas deferens, seminal vesicles
 - Empty into a blind-ending vagina
- External genitalia predominately female
 - Absent external male genitalia
 - Range of female genitalia seen +/- hypospadias
 - Sometimes diagnosed at birth due to ambiguous genitalia

- Typical case
 - Male with ambiguous genitalia
 - Female child with masculinization at puberty
 - Blind vagina
 - Absence of uterus
 - Bilateral undescended testes
 - Normal testosterone levels

Testosterone Effects

Puberty

- Enlargement of the scrotum, and testes
- Increased penis size
- Enlargement of seminal vesicles/prostate
- Growth of pubic hair
- Hair on face/underarms
- Deepening of voice

- Growth spurt (via estrogens)
 - Increased linear growth
 - Closure of epiphyseal plates

Acne

- Associated with increased sebum
- Secretion of sebaceous glands
- Androgen receptors on sebaceous glands
- Androgens stimulate growth/secretions
- Acne common in puberty
- Also common in other forms androgen excess
 - Polycystic ovarian syndrome
 - Congenital adrenal hyperplasia

- Prostate growth
 - Finasteride \(\rightarrow \) DHT \(\rightarrow \) Treatment of BPH
 - Testosterone therapy \(\rightarrow \) BPH
 - May effect lipids
 - Exogenous testosterone \(\rightarrow \) HDL/\(\) LDL
 - Male pattern balding
Spironolactone

- **Potassium sparing diuretic**
- Blocks effects of aldosterone
- Used in hypertension, heart failure
- **Key side effect:** gynecomastia (~10%)
- Blocks androgen receptor
- ↓ androgen production from androstenedione
- Result:
 - ↑ estrogen effects
 - ↓ androgen effects

Anabolic Steroids

- **High dosages** of androgens used by body builders
- Exogenous testosterone
- Androgen precursors
- All lead to ↑ testosterone effects → ↑ muscle mass
- **Adverse effects**
 - ↑ HDL/↑ LDL
 - Erythrocytosis
 - Small testes (suppression of FSH/LH)
 - Anospermia
 - Gynecomastia

Testosterone Therapy

- Used in male hypogonadism
- Results in:
 - Increased muscle mass
 - Increased bone density
- **Potential adverse effects**
 - ↑ hematocrit
 - Acne
 - Balding
 - Worsening BPH

Male Hypogonadism

- Many congenital and acquired causes
- May occur with **aging**
 - ↓ serum testosterone
 - ↑ sex hormone-binding globulin (SHBG)
 - ↓ serum free testosterone
- May be associated with:
 - ↓ sexual function
 - ↓ bone mass
 - Anemia
- Limited data on hormone replacement for decreased testosterone due to aging

Spermatogenesis

- Suppressed by exogenous testosterone
- Testosterone suppresses LH secretion
- ↑ testosterone from Leydig cells
- Exogenous hormone weak activity in testes
- ↓ spermatogenesis

Androgenic Alopecia

- Most common type of hair loss in men
- Anterior scalp, mid scalp, temporal scalp, and vertex
- Caused by **androgens**
 - Occurs after puberty
 - Will not occur with androgen deficiency
- **DHT** is key androgen
 - Responds to finasteride treatment

Testosterone Therapy

- Used in male hypogonadism
- Results in:
 - Increased muscle mass
 - Increased bone density
- **Potential adverse effects**
 - ↑ hematocrit
 - Acne
 - Balding
 - Worsening BPH

Anabolic Steroids

- **High dosages** of androgens used by body builders
 - Exogenous testosterone
 - Androgen precursors
 - All lead to ↑ testosterone effects → ↑ muscle mass
- **Adverse effects**
 - ↑ HDL/↑ LDL
 - Erythrocytosis
 - Small testes (suppression of FSH/LH)
 - Anospermia
 - Gynecomastia

Spironolactone

- Potassium sparing diuretic
- Blocks effects of aldosterone
- Used in hypertension, heart failure
- Key side effect: **gynecomastia** (~10%)
- Blocks androgen receptor
- ↓ androgen production from androstenedione
- Result:
 - ↑ estrogen effects
 - ↓ androgen effects

Spermatogenesis

- Suppressed by exogenous testosterone
- Testosterone suppresses LH secretion
- ↑ testosterone from Leydig cells
- Exogenous hormone weak activity in testes
- ↓ spermatogenesis

Androgenic Alopecia

- Most common type of hair loss in men
- Anterior scalp, mid scalp, temporal scalp, and vertex
- Caused by **androgens**
 - Occurs after puberty
 - Will not occur with androgen deficiency
- **DHT** is key androgen
 - Responds to finasteride treatment
Sertoli Cells
- Form **blood-testis barrier**
- Tight junctions between adjacent Sertoli cells
- Isolates sperm
- Protection from autoimmune attack

Spironolactone
- Acne, hirsutism, alopecia in women
- Blunts testosterone effects
- Enhances estrogen effects
- Amenorrhea
 - Stimulates progesterone receptors

Sertoli Cells
- Support and nourish developing spermatozoa
- Regulate spermatogenesis

Spironolactone
- Eplerenone
 - Alternative to spironolactone
 - Does not cause gynecomastia
 - Can be used in heart failure

Sertoli Cells
- Stimulated by FSH
- Supported by Leydig cell testosterone (paracrine)
- Need FSH and LH for normal spermatogenesis

Spironolactone
- Acne, hirsutism, alopecia in women
- Blunts testosterone effects
- Enhances estrogen effects
- Amenorrhea
 - Stimulates progesterone receptors

Spironolactone
- Eplerenone
 - Alternative to spironolactone
 - Does not cause gynecomastia
 - Can be used in heart failure

Sertoli Cells
- Secrete **inhibin B**: Inhibits FSH
Disorders of Sex Development

Ambiguous Genitalia
- Abnormal Puberty
- 46, XX 46, XY

Mullerian Structures
- YES
- Often
- CAH

Gonadal Dysgenesis
- NO
- Lack of androgens
- CAH
- CAIS
- ↓ DHT

Male Development

- **Y Chromosome**
 - SRY
 - Testes
 - Mesonephric Ducts

- **Testosterone**
 - DHT
 - External genitalia
 - Penis/Scrotum
 - Prostate

- **Internal Genitalia**
 - Seminal vesicles
 - Epididymis
 - Vas deferens

Anti-mullerian Hormone

- In utero (XX or XY): Two systems
 - Indifferent gonad (can develop into ovaries or testes)
 - Paramesonephric (Mullerian) duct: female structure
 - Mesonephric (Wolffian) duct: male structures
 - Y chromosome → testes → Sertoli cells
 - Secretion of anti-mullerian hormone
 - Mullerian inhibitory hormone/substance
 - Degeneration of mullerian system
 - Leaves gonad and mesonephric ducts

CAIS

- Complete Androgen Insensitivity Syndrome
 - Mutation of androgen receptor in males (XY)
 - No ovaries; testes form in utero (SRY gene)
 - No cellular response to androgens
 - No internal or external male genital development
 - Sertoli cells (testes) present → MIH
 - Degeneration of mullerian structures
 - Absent uterus, fallopian tubes

CAIS

- Complete Androgen Insensitivity Syndrome
 - At puberty:
 - Breasts develop (testosterone → estrogen)
 - No armpit/pubic hair (depends on androgens)
 - Amenorrhea (no uterus)
 - Abdominal testes

Sertoli Cells

- Secrete androgen-binding protein (ABP)
 - Raises/maintains local testosterone levels
 - Intra-testicular testosterone concentration 100x peripheral
- Produce anti-mullerian hormone
 - Results in degeneration of mullerian ducts

Anti-mullerian Hormone

- Secrete androgen-binding protein (ABP)
 - Raises/maintains local testosterone levels
 - Intra-testicular testosterone concentration 100x peripheral
- Produce anti-mullerian hormone
 - Results in degeneration of mullerian ducts

Disorders of Sex Development

- Ambiguous Genitalia
 - Abnormal Puberty
 - 46, XX
- Mullerian Structures
 - YES
 - Often
 - CAH
- YES
 - Gonadal Dysgenesis (No MIH)
 - Lack of androgens
 - CAH
 - CAIS
 - ↓ DHT
Varicocele
- Dilatation of pampiniform plexus of spermatic veins

Bilateral Undescended Testes
- Phenotypical male with bilateral non-palpable testes
- Dangerous cause: **congenital adrenal hyperplasia**
 - Female (XX) exposed to increased androgens
 - Ambiguous genitalia may appear male with absent testes
 - Risk of shock from low cortisol
 - Key tests: ACTH, Cortisol
- Testes may be absent
 - Agenesis or atrophy (intrauterine vascular compromise)
 - Serum testing often done
 - Absent testes: ↑LH/FSH, absence of MIH

Cryptorchidism
- “Hidden testes”
- Usually due to undescended testes
 - Abdominal
 - Inguinal canal
 - Can be unilateral/bilateral
- Treatment
 - Testes may descend on their own
 - Usually occurs by 6 months of age
 - **Orchiopexy**
 - Surgical placement of the testis in scrotum
 - Sperm counts usually become normal
 - Done after 6 months of age

Temperature Effects
- Spermatogenesis requires ↓ temperature
- Sertoli cells sensitive to temperature
 - ↓ spermatogenesis with higher temperature
 - ↓ inhibin production with higher temperature (FSH)
 - Leydig cells less sensitive
 - Testosterone production usually maintained higher temps

Cryptorchidism Complications
- Low sperm counts
 - ↑ temperature effects on Sertoli cells
 - **Low inhibin levels**
 - ↑ risk of germ cell tumors
 - Inguinal hernias
 - Testicular torsion
 - Testicle rotates → twists spermatic cord
 - Compression of veins → ↓ blood flow
 - Hemorrhagic infarction

Cryptorchidism Temperature Effects
- Spermatogenesis requires ↓ temperature
- Sertoli cells sensitive to temperature
 - ↓ spermatogenesis with higher temperature
 - ↓ inhibin production with higher temperature (↑FSH)
- Leydig cells less sensitive
 - Testosterone production usually maintained higher temps
Varicocele

- Caused by obstruction to outflow of venous blood
- More common on left
 - Left spermatic vein → left renal (long course)
 - Compressed between aorta and superior mesenteric artery
 - "Nutcracker effect"
 - Right vein drains directly to IVC
- Associated with renal cell carcinoma
 - Invades renal vein

Varicocele

- Scrotal pain and swelling
 - "Bag of worms"
- More swelling with:
 - Valsalva
 - Standing
- Diagnosed by ultrasound
- Can cause infertility
 - ↑ temperature
 - Poor blood flow

Varicocele

- Treatment
 - Surgery (varicocelectomy)
 - Isolate dilated/abnormal veins
 - Redirect blood flow to normal veins
 - Embolization
 - Interventional radiology procedure
 - Catheter inserted into dilated/abnormal veins
 - Coil or sclerosants used to clot off veins

Varicocele

- Caused by obstruction to outflow of venous blood
- More common on left
- Left spermatic vein → left renal (long course)
- Compressed between aorta and superior mesenteric artery
- "Nutcracker effect"
- Right vein drains directly to IVC
- Associated with renal cell carcinoma
- Invades renal vein
Female Reproductive Hormones

Estrogens

- **Potency:** Estradiol > Estriol > Estrone

Theca Cells
- Convert cholesterol into androstenedione
- Stimulated by LH (via cAMP 2nd messenger)

Granulosa Cells
- Convert androstenedione into estradiol
- Stimulation by FSH (via cAMP 2nd messenger)
- Also produce inhibin → suppresses FSH

Ovarian Follicle
- Egg surrounded by cells
- Two key cell types: theca and granulosa cells

Hormone Synthesis

- **Estradiol (17β-estradiol)**
- **Estriol**
- **Estrone**

Potency: Estradiol > Estriol > Estrone
Estrogen Effects
• Growth of follicle
 • Theca/Granulosa cells → estradiol → follicular growth
• In crease SHBG
 • Amplifies estrogen effects
• Lipids
 • Raises HDL
 • Lowers LDL

Estrogen Effects
Puberty
• Breast enlargement
• Pigmentation of areolas
 • Also seen in pregnancy
• Female body habitus
 • Narrow shoulders, broad hips
 • Female fat distribution in breasts and buttocks
 • Note: Pubic and axillary hair from androgens

Estrogen Effects
Pituitary
• ↓ FSH secretion (negative feedback)
• ↓ LH secretion (negative feedback)
• Exception: Can trigger LH surge (positive feedback)

Estrogen Effects
• Growth of follicle
 • Theca/Granulosa cells → estradiol → follicular growth
• Increase SHBG
 • Amplifies estrogen effects
• Lipids
 • Raises HDL
 • Lowers LDL

Progesterone
• Synthesized by corpus luteum
 • Also placenta, adrenal glands, testes
• Most bound to albumin
• Short half life → metabolized by liver
• Main target is uterus, cervix, vagina

Progesterone Effects
• Many effects oppose estrogen
 • Decreases expression estrogen receptors
 • Many effects favorable to pregnancy

Progesterone Effects
• Secretory phase of uterine cycle
• Thickens cervical mucus
 • Prevents sperm entry
• Prevents uterine contractions
 • ↓ uterine excitability
 • ↑ membrane potential of uterine smooth muscle
 • Uterine smooth muscle relaxation
• Raises body temperature (seen in pregnancy)
• Inhibits LH/FSH release
Hormonal Changes

- Estrogen levels high during reproductive years
- Higher in obese women
 - Androgens → estrone in adipose tissue
- High estrogens levels may lead to pathology:
 - Endometriosis
 - Uterine fibroids

![Hormonal Changes Diagram](image)

Oral Contraceptives

- Analogs of estrogens and progesterone
 - "Estrogens and progestins"
- Progestin only
 - Oral "mini pill"
 - Medroxyprogesterone injection (Depo-Provera)
- Combination pills
 - Contain estrogen and progesterone

Progestin Only

- Suppress ovulation via negative feedback on FSH/LH
- Thickens cervical mucus
- Obstructs sperm
- May protect against PID
- Thins endometrium
- Prevents implantation

Progestin Only

- Disadvantages
 - Same time every day (+/- 3 hours)
 - Irregular bleeding, spotting
- Advantages
 - No estrogen risks/side effects
Combination OCPs

- Combination of progestin and estrogen
- Estrogen stabilizes endometrium
 - Less breakthrough bleeding
- Better suppression of follicular growth
 - Progesterone suppresses LH
 - Estrogen suppresses FSH
- Estrogen increases effect of progesterone
 - More progesterone receptors

Combination OCP Risks

- Thrombosis
 - Estrogen increases clotting factors
 - Usually venous thrombosis: DVT/PE
 - Rarely arterial thrombosis: stroke/MI
- Cancer
 - Conflicting data
 - May ↓ risk of endometrial and ovarian cancer
 - May ↑ risk breast, cervical, liver cancer

Combination OCPs

- Contraindications
 - Smokers >35 years of age
 - Risk of CV events
 - History of DVT/PE

Medroxyprogesterone

- Depo-Provera
 - Injectable, progestin-only contraceptive
 - Intramuscular or subcutaneous
 - Once every 3 months

Combination OCP Risks

- Breakthrough bleeding
 - Most common side effect
 - More frequent if low estrogen component
 - Hypertension (usually mild)
Menstrual Cycle

Basic Principles

- Phases
 - Follicular (growth of follicles)
 - Ovulation
 - Luteal (preparation for pregnancy)

Ovaries

Basic Principles

- Contain follicles
 - Spherical collection of cells
 - Contains a single oocyte
 - Each menstrual cycle one egg matures/releases

Ovarian Follicle

- Egg surrounded by cells
- Two key cell types: theca and granulosa cells

During menstrual cycle, follicles mature
One “dominant” follicle will release egg

Menstrual Cycle

Basic Principles

- Phases
 - Follicular (growth of follicles)
 - Ovulation
 - Luteal (preparation for pregnancy)
Menstrual Cycle

Follicular phase
- ↑ GnRH pulse frequency
- ↑ FSH → ↑ estradiol production from ovaries
- Recruitment of follicles
- ↑ estradiol → ↓ FSH/LH (negative feedback)
- Selection of one dominant/ovulatory follicle
- 10-14 days (varies in length)

Luteal phase
- Eventually corpus luteum degrades
- ↓ progesterone → menstruation
- Occurs 14 days after ovulation
- If fertilization occurs:
 - Embryo makes human chorionic gonadotropin (hCG)
 - Maintains the corpus luteum and progesterone production
 - Progesterone maintains suppression of LH/FSH

Corpus luteum forms
- Temporary endocrine gland formed from follicle
- Produces large amounts of progesterone
- Also some estradiol
- Progesterone/estradiol → ↓ LH/FSH
- Negative feedback

Mittelschmerz
- Mid-cycle pain
- Due to:
 - Enlargement of follicle or follicular rupture with bleeding
- Usually mild, unilateral pain
- Usually resolves in hours to days
- Can mimic other disorders (appendicitis)

Mid-cycle surge
- Switch from negative feedback to positive feedback
- Estradiol triggers ↑ frequency GnRH pulses → LH surge
- Oocyte released from follicle ~36 hours after LH surge
- Basis for ovulation testing
 - Urine detection of LH

Ovulation
- Basis for ovulation testing
 - Urine detection of LH

Follicular phase
- ↑ GnRH pulse frequency
- ↑ FSH → ↑ estradiol production from ovaries
- Recruitment of follicles
- ↑ estradiol → ↓ FSH/LH (negative feedback)
- Selection of one dominant/ovulatory follicle
- 10-14 days (varies in length)
Menstrual and Uterine Cycles

Uterine Cycle

- Changes in endometrium
- Driven by estrogens and progesterone
- Parallels ovarian cycle
- Two phases:
 - Proliferative phase = follicular phase of ovary
 - Secretory phase = luteal phase of ovary

Menstruation

- Occurs after ovulation
- Progesterone inhibits proliferation of endometrium
- Numerous secretions released to prepare for embryo
- Changes in blood vessels
 - Vessels grow and coil
 - Form "spiral arteries" about 9th postovulatory day
 - Critical for implantation, support of fertilized egg

Uterine Cycle

- Stimulation by estrogens
- Endometrial thickness increases (>10x)
- Growth of glands, stroma, blood vessels

Amenorrhea

- Primary amenorrhea
 - Failure of menses at puberty
 - Usually anatomic or genetic abnormality
- Secondary amenorrhea
 - Cessation of normal menses after prior normal periods
Secondary Amenorrhea

- Low body weight
- "Functional hypothalamic amenorrhea"
- Stress plus low caloric intake → ↓ GnRH/LH/FSH
- Patients respond to pulsatile GnRH
- Can occur in anorexia

Secondary Amenorrhea

- Most common cause: pregnancy
- Screen with HCG measurement
- Thyroid disease (hypo/hyper)
- Prolactinoma
 - Inhibition of GnRH release → ↓ LH/FSH
- Cushing syndrome

Progestin Challenge

- Older test for causes of amenorrhea
- Many false positives
- Administration of progestin (oral or IM)
- Observation of menstrual bleeding within 7 days

Progestin Challenge

- Bleeding
 - Indicates estrogen is present
 - Suggests anovulation
 - Corpus luteum not forming (inadequate progesterone)
 - Classic cause: PCOS
- No bleeding
 - Suggests estrogen not present (ovarian dysfunction)
 - Or menstrual outflow problem
 - Can follow-up with estrogen-progestin challenge
- Common cause: Menopause

Mullerian Dysgenesis

- Cause of primary amenorrhea
- Failure of Mullerian duct development
- Absent upper vagina and/or uterus
- Ovaries normal
- Estrogen/progesterone levels normal
- Normal LH/FSH levels

Secondary Amenorrhea

- Low body weight
 - "Functional hypothalamic amenorrhea"
 - Stress plus low caloric intake → ↓ GnRH/LH/FSH
 - Patients respond to pulsatile GnRH
 - Can occur in anorexia
Menopause

- Permanent cessation of menstrual periods
- Cause by depletion of ovarian follicles
- Median age = 51 years
- Usually preceded by abnormal periods
- Loss of estrogens and progesterone from ovaries

Menopause

- Loss of estradiol production from ovaries
- Source of estrogen becomes adipose tissue
- Aromatase converts androstenedione to estrone
- Also loss of inhibin production from follicles
- Inhibin normally suppresses FSH release
- ↑ FSH is an early finding approaching menopause
- Eventually FSH and LH levels both elevated

Menopause

Symptoms

- Hot flashes
 - Subjective sensation of warmth
 - Usually lasts a few minutes and passes
 - Associated with drop in estrogen levels
 - Can be treated with hormone replacement
- Vaginal atrophy
 - Thin, dry, friable
 - Loss of estrogen stimulation

Menopause

Symptoms

- Osteoporosis
 - Bone loss from lack of estrogen
- Cardiovascular disease
 - Risk increases after menopause
 - May be due in part due to estrogen deficiency

HRT

Hormone Replacement Therapy

- Oral or transdermal estradiol
- Progestin added in women with intact uterus
- Prevents endometrial hyperplasia

HRT

Hormone Replacement Therapy

- Benefits:
 - Relieves hot flashes
 - Improves bone density
- Possible risks:
 - ↑ risk of DVT/Stroke/MI
 - ↑ risk of breast cancer
PCOS
Polycystic Ovarian Syndrome
- Common cause secondary amenorrhea
- Genetics plus diet/obesity \(\rightarrow\) ↑ LH:FSH ratio
- LH drives androstenedione from theca cells
- Some androgens \(\rightarrow\) estrone in adipose tissue
- Estrone \(\rightarrow\) ↓ FSH \(\rightarrow\) anovulation

Hyperinsulinemia
- PCOS associated with insulin resistance
- More than expected for degree of obesity
- Can lead to diabetes

PCOS
Clinical features
- Occurs in obese females
- Hirsutism (facial hair)
- Acne
- Amenorrhea
- Infertility
- Ultrasound: multiple follicular cysts

PCOS
Diagnosis
- Usually diagnosed clinically
- Can measure total testosterone
- LH and FSH may be within normal range
 - But LH:FSH ratio usually > 2:1 or 3:1

PCOS
Treatment
- Weight loss
- Oral contraceptives
 - Supress LH
 - Estrogen \(\rightarrow\) ↑ SHBG \(\rightarrow\) ↓ androgens
- Spironolactone
 - Blocks androgens
- Metformin/TZDs
 - Diabetes drugs that improves insulin resistance
 - Not routinely used unless patient develops diabetes
PCOS
Other Features
• Risk of diabetes
 • ~10% of women with PCOS develop DM by 40 years old
• Acanthosis Nigricans
 • Plaques of darkened skin
 • Associated with insulin resistance
 • Common in diabetes, PCOS, also gastric cancer
• Endometrial cancer
 • Unopposed estrogen (lack of progesterone)
 • ↑ risk of endometrial hyperplasia and carcinoma

Amenorrhea Workup
Rule out:
- Pregnancy
- Thyroid
- Cushing
- Prolactin
- Anorexia

<table>
<thead>
<tr>
<th>↓FSH</th>
<th>↑FSH</th>
<th>Normal FSH</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCOS</td>
<td>↑LH:FSH</td>
<td>Menopause</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mullerian Dysgenesis</td>
</tr>
</tbody>
</table>
Pituitary Gland

Master gland

- Endocrine gland at base of brain
- Sits in small cavity of sphenoid bone: sella turcica

Anterior Pituitary Gland

Derived from Rathke's pouch

- Outgrowth of oral cavity
- Contains five cell types that make hormones

<table>
<thead>
<tr>
<th>Cell Type</th>
<th>Hormone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corticotrophs</td>
<td>Adrenocorticotropic hormone (ACTH)</td>
</tr>
<tr>
<td>Thyrotrophs</td>
<td>Thyroid-stimulating hormone (TSH)</td>
</tr>
<tr>
<td>Gomatosrophs</td>
<td>Luteinizing hormone (LH)</td>
</tr>
<tr>
<td>Somatotrophs</td>
<td>Growth hormone (GH)</td>
</tr>
<tr>
<td>Lactotrophs</td>
<td>Prolactin</td>
</tr>
</tbody>
</table>

Posterior Pituitary Gland

Neurohypophysis

- Secretes ADH (vasopressin) and oxytocin
- Derived from neural ectoderm in floor of forebrain
- Contains axons and nerve terminals
- Neurons originate in hypothalamus
- **Paraventricular and supraoptic nuclei**
 - Paraventricular: Oxytocin
 - Supraoptic: ADH

Hypothalamic Portal System

- Main blood supply to anterior pituitary gland
- Delivers releasing/inhibiting hormones

<table>
<thead>
<tr>
<th>Hypothalamus</th>
<th>Pituitary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corticotropin-releasing hormone (CRH)</td>
<td>ACTH</td>
</tr>
<tr>
<td>Thyrotropin-releasing hormone (TRH)</td>
<td>TSH</td>
</tr>
<tr>
<td>Gonadotropin-releasing hormone (GnRH)</td>
<td>LH/TSH</td>
</tr>
<tr>
<td>Growth hormone-releasing hormone (GHRH)</td>
<td>GH</td>
</tr>
<tr>
<td>Dopamine</td>
<td>Prolactin</td>
</tr>
<tr>
<td>Somatostatin</td>
<td>GH, TSH</td>
</tr>
</tbody>
</table>
Prolactin
- Protein hormone
- Regulates milk production in mothers

Prolactin
- Under inhibitory control from hypothalamus
 - Hypothalamus releases dopamine
 - Inhibits lactotrophs via binding to D2 receptors
 - Destruction of hypothalamus: ↑ prolactin
- Prolactin feedback on hypothalamus
 - Increases dopamine release → ↓ prolactin

Prolactin
- Many other substances affect prolactin release
 - VIP, Oxytocin, TRH, others
 - TRH (thyrotropin-releasing hormone)
 - Elevated in hypothyroidism
 - Hypothyroidism predisposes to hyperprolactinemia
 - Hypothyroidism in differential for:
 - Pituitary enlargement
 - Hyperprolactinemia

Prolactin
- Estrogen stimulates prolactin release
 - Stimulates gene transcription
 - Stimulates release from lactotrophs
 - Marked increase in lactotrophs during pregnancy
 - Pituitary can grow in size

Prolactin in Pregnancy
- Prolactin inhibits GnRH release
- Results in cessation of ovulation/menstruation

Prolactin in Pregnancy
- Prolactin stimulates growth of mammary glands
- Milk production in pregnancy does not occur
 - Estradiol and progesterone block prolactin effect on milk
- After childbirth → ↓ estradiol and progesterone
 - Milk production occurs
Dopamine Antagonists
- Antipsychotics: Haloperidol, Risperidone
- Antiemetics: Metoclopramide
- Blockade of D2: ↑ prolactin
- Side Effects:
 - Amenorrhea
 - Breast engorgement
 - Galactorrhea
 - Sexual dysfunction
 - Can also cause Parkinsonian symptoms

Prolactinoma
- Most common hormone secreting tumor
- Headache, vision loss
- Rarely seizures
- Women: amenorrhea, fractures (low bone density)
- Men: Loss of libido, impotence
- Diagnosis: serum prolactin; CNS imaging
- Treatment: Bromocriptine, cabergoline

Hyperprolactinemia
- Women
 - Amenorrhea (lack of GnRH/LH/FSH)
 - Galactorrhea (prolactin)
- Men
 - "hypogonadotropic hypogonadism"
 - Decreased libido
 - Impotence
 - Infertility
 - Gynecomastia
 - Usually no galactorrhea (not enough breast tissue)

Pituitary Adenomas
- Tumors of any cell type of anterior pituitary
- May result in increased secretion of hormones
- Most common secreting tumor: prolactinoma

<table>
<thead>
<tr>
<th>Cell Type</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactotrophs</td>
<td>Hyperprolactinemia</td>
</tr>
<tr>
<td>Thyrotrophs</td>
<td>General hyperthyroidism</td>
</tr>
<tr>
<td>Corticotrophs</td>
<td>Cushing's disease</td>
</tr>
<tr>
<td>Somatotrophs</td>
<td>Acromegaly/Gigantism</td>
</tr>
</tbody>
</table>

Dopamine Agonists
- Cabergoline, Bromocriptine
- Can be used to treat Parkinson’s disease
- Also used to treat prolactinomas
- Will inhibit prolactin release (via D2 receptors)

Pituitary Adenomas
- General Symptoms
 - Headaches
 - Classic cause of bitemporal hemianopsia
 - Compression of optic chiasm

Pituitary Adenomas
- Tumors of any cell type of anterior pituitary
- May result in increased secretion of hormones
- Most common secreting tumor: prolactinoma
Sheehan Syndrome

- Pituitary gland enlarged in pregnancy
- Vulnerable to infarction from hypovolemic shock
- Postpartum hemorrhage → hypopituitarism
- Can present as shock after delivery
- Also can see failure to lactate

Pituitary Apoplexy

- Sudden hemorrhage into the pituitary gland
- Often occurs into pre-existing adenoma
- Risk factors for bleeding may be present (warfarin)
- Sudden onset severe headache
- Diplopia (pressure on oculomotor nerves)
- Hypopituitarism (shock from loss of cortisol)

Empty Sella Syndrome

- Enlarged sella turcica partially filled with CSF
- Rarely can compress pituitary → hypopituitarism
- More common in women with obesity, hypertension

Craniopharyngioma

- Benign tumor
- Usually occurs in children 10-14 years old
- Symptoms from compression
 - Hypopituitarism
 - Headache, visual field defects
 - Behavioral change (frontal lobe dysfunction)
 - Derived from remnants of Rathke's pouch

Hypopituitarism

- Caused by damage to anterior pituitary
 - Mass: Nonfunctional adenoma, craniopharyngioma
 - Ischemia, brain injury, hemorrhage
 - ACTH deficiency
 - Low cortisol → shock
 - No loss of aldosterone → no salt wasting
 - Lack of hyperpigmentation (see in primary adrenal failure)
 - TSH deficiency → hypothyroidism
 - LH/FSH deficiency → hypogonadism

Radiation

- Some head and neck tumors treated with radiation
 - Brain tumors or nasopharyngeal carcinomas
- Some pituitary adenomas treated with radiation
- Can cause damage to hypothalamus or pituitary

Stevenfruitsmaak/Wikipedia

Surgical Excision/Wikipedia
Growth Hormone

Somatotropin
- Protein hormone
- Important for **linear (height)** growth in childhood
- Released in a pulsatile manner
- Between pulses levels may become undetectable

Growth Hormone Receptor
- Bind to a **membrane-bound** receptor
- Activates janus kinase 2 (JAK2) enzyme
- Cytoplasmic tyrosine kinase
- Phosphorylates tyrosine residues
- Within JAK2 itself and on GH receptor
- Forms binding sites for many signaling molecules
- Alters gene expression

Hypopituitarism
Treatment
- Hormone therapy
 - Corticosteroids
 - Thyroid hormone
 - Growth hormone
 - Estrogen/testosterone

Growth Hormone
- Liver contains many growth hormone receptors
- GH → Liver → IGF-1 secreted
- Insulin-like growth factor 1/Somatomedin
- Hormone that mediates many growth hormone effects
- Can be measured in serum as indicator of GH function
- IGF-1 also produced in peripheral tissues
- Paracrine effects on nearby sites

Growth Hormone
Direct Effects
- ↓ glucose uptake by cells
 - Anti-insulin
 - Will raise blood sugar ("Diabetogenic")
- Peripheral tissues become insulin resistant
- Hyperinsulinemia

92
Growth Hormone Excess
- Most common cause is somatotroph adenoma
- High GH and IGF-1
- Low GHRH from hypothalamus (negative feedback)
- High somatostatin (negative feedback)
- May present with headache, vision loss
- Rare cause: GHRH secreting tumors
- Hypothalamic tumors, carcinoid tumors, small-cell lung CA
- GHRH level will be high

Growth Hormone Deficiency
- Most commonly from pituitary tumor
- Mass effect
- Consequence of surgery/radiation
- Treatment: Synthetic growth hormone
- Monitoring: Serum IGF-1 level

Growth Hormone Effects
- Bone/Muscle
 - Linear Growth
 - Lean muscle Mass
- Glucose
 - Opposes Insulin
 - Raises blood sugar
- Fat
 - Increased lipolysis

Growth Hormone Deficiency Effects
- Chondrocytes
 - Increased linear growth
- Muscle
 - Lean muscle mass
- Organs
 - Increased organ size

Growth Hormone Excess Effects
- Promotes lipolysis
 - Activates hormone sensitive lipase
 - Production of IGF-1 from liver

Growth Hormone Deficiency Effects
- Children:
 - Failure to grow
- Adults
 - ↑ fat
 - ↓ lean body mass
 - Low energy
Growth Hormone Excess

- Children:
 - Excessive growth: Gigantism
 - Linear growth: Very tall child
- Adults: Acromegaly

Acromegaly

- Insidious onset
 - Average duration symptoms → diagnosis = 12 years
- Enlarged jaw
 - Coarse facial features
 - Enlargement of nose, frontal bones

Acromegaly

- Enlarged hands and feet
 - Classic sign: Increasing glove/shoe size
 - Rings that no longer fit

Acromegaly

- Visceral organs enlargement
 - Thyroid, heart, liver, lungs, kidneys, prostate
- Synovial tissue/cartilage enlargement
 - Joint pain in knees, ankles, hips, spine
 - Common presenting complaint is joint pain
- Cardiovascular disease
 - Hypertension, left ventricular hypertrophy, cardiomyopathy
 - Mortality increased in acromegaly due to CV disease

Growth Hormone Excess

Diagnosis

- Serum IGF-1 concentration
 - IGF-1 level is constant (contrast with GH)
- Oral glucose tolerance testing
 - Glucose should suppress growth hormone levels
 - Normal subjects: GH falls within two hours
 - Post glucose levels high
- CNS imaging (MRI)
Somatostatin
- Inhibits release of many hormones
- Released by D cells throughout GI tract
- Also found in nerves throughout entire body
- Originally discovered in hypothalamus
- Inhibits growth hormone release
- Used therapeutically (Octreotide):
 - Acromegaly
 - Carcinoid syndrome
 - Glucagonoma/insulinoma
 - Upper GI bleeding (↓ splanchnic blood flow)

Oxytocin
- Produced in paraventricular nuclei of hypothalamus
- Causes milk release in response to suckling
 - Afferent fibers nipple → spinal cord
 - Triggers release oxytocin from posterior pituitary
 - Oxytocin triggers contraction of myoepithelial cells in breast

MSH
- Melanocyte Stimulating Hormone
 - Proopiomelanocortin: Precursor of ACTH
 - Also precursor of MSH (α/β/γ)
 - MSH: Stimulates melanocytes to produce melanin
 - Causes hyperpigmentation in Cushing’s disease

Oxytocin
- Produced in paraventricular nuclei of hypothalamus
- Causes milk release in response to suckling
 - Afferent fibers nipple → spinal cord
 - Triggers release oxytocin from posterior pituitary
 - Oxytocin triggers contraction of myoepithelial cells in breast

Growth Hormone Excess
- Treatment
 - Octreotide
 - Analog of somatostatin
 - Suppresses release of growth hormone
 - Also surgery, radiation
 - Goal: Lower IGF-I to within reference range
 - Bony abnormalities do not regress
 - Joint symptoms often continue

MSH
- Melanocyte Stimulating Hormone
 - Proopiomelanocortin: Precursor of ACTH
 - Also precursor of MSH (α/β/γ)
 - MSH: Stimulates melanocytes to produce melanin
 - Causes hyperpigmentation in Cushing’s disease

Growth Hormone Excess
- Treatment
 - Octreotide
 - Analog of somatostatin
 - Suppresses release of growth hormone
 - Also surgery, radiation
 - Goal: Lower IGF-I to within reference range
 - Bony abnormalities do not regress
 - Joint symptoms often continue

Oxytocin
- Also causes contraction of uterus
 - Oxytocin receptors upregulate in uterus near term
 - Pitocin (synthetic oxytocin)
 - Induction of labor
 - Postpartum uterine bleeding
Parathyroid Glands

Parathyroid Glands

Parathyroid Hormone

• Protein hormone
• Binds to cell surface receptors in bone and kidney
• Synthesized by chief cells of parathyroid gland

Parathyroid Hormone Effects

• Net Effects:
 • ↑ [Ca\(^{2+}\)] plasma
 • ↓ [P04\(^{3-}\)] plasma
 • ↑ [P04\(^{3-}\)] urine
 • Some due to direct action PTH
 • Some due to activation of vitamin D (indirect)

Parathyroid Hormone

• Secreted in response to:
 • ↓ [Ca\(^{2+}\)] (major stimulus; fastest response)
 • ↑ plasma [P04\(^{3-}\)]
 • ↓ 1,25-(0H)\(_2\) vitamin D
 • Calcium activates calcium-sensing receptors (CaSRs)
 • ↓ PTH

Parathyroid Hormone

• High magnesium
 • ↑ PTH (same effect as calcium)
 • Magnesium can activate CaSRs
• Low Mg
 • ↑ PTH release (same effect as calcium)
 • ↑ GI and renal magnesium along with calcium
Parathyroid Hormone

Magnesium

- Very low Mg → inhibits PTH release
- Some Mg required for normal CaSR function
- Abnormal function → suppression of PTH release
- Hypocalcemia often seen in severe hypomagnesemia

Parathyroid Hormone Effects

- Kidney:
 - ↑Ca\(^{2+}\) resorption (DCT)
 - ↓P04\(^{3-}\) resorption (PCT)
 - ↑1,25-(OH)\(^2\) vitamin D production
- GI:
 - ↑Ca\(^{2+}\) and P04\(^{3-}\) absorption (via vitamin D)
- Bone:
 - ↑Ca\(^{2+}\) and P04\(^{3-}\) resorption (direct and via vitamin D)

Qt Interval

Normal Qt

Prolonged Qt: ↓Mg, ↓Ca

Short Qt: ↑Ca

Parathyroid Hormone

Lumen (Urine) Interstitium/Blood

PTH

1,25-(OH)\(^2\) Vitamin D

Vitamin D and the Kidney

- Proximal tubule converts vitamin D to active form
- Can occur independent of kidney in sarcoidosis
- Leads to hypercalcemia
Types of Bone

- **Cortical bone**
 - Hard, outer layer of bone
 - ↑ in response to continuous PTH

- **Trabecular bone**
 - Sponge, inner layer of bone
 - ↑ in response to intermittent, low dose PTH

Parathyroid Hormone

- Multiple effects on bone
 - Stimulates bone resorption and formation
 - Dominant effect varies with dosage/timing of administration of PTH to bone

Parathyroid Hormone

- Continuous administration of PTH
 - Bone resorption → ↑ serum calcium
 - Important physiologically
 - Low dose once daily bolus administration
 - Increased bone mass (bone formation)
 - Teriparatide used to treat osteoporosis

Parathyroid Hormone

- Osteoblasts
 - Bone forming cells
 - Contain PTH receptors
 - Can ↑ bone mass in response to PTH

- Osteoclasts
 - Bone resorbing cells
 - No PTH receptors
 - Activated indirectly by osteoblasts

Parathyroid Hormone

- M-CSF
 - Macrophage colony stimulating factor
 - Secreted by osteoblasts

- RANK-L
 - Receptor activating nuclear factor κB ligand
 - Expressed on surface of osteoblasts
 - Both produced by osteoblasts → activate osteoclasts
Primary Hyperparathyroidism
• Inappropriate secretion of PTH
• Not due to low calcium
• Commonly caused by parathyroid adenoma

Hyperparathyroidism
• Primary (overactive glands)
• Secondary (hypocalcemia)
• Tertiary (seen in renal failure)

PTHrP
Parathyroid hormone-related protein
• Produced in many tissues
• Numerous normal effects
• Synthesized in large amounts by some tumors
 • Renal cell carcinoma
 • Squamous cell lung cancer
• Leads to hypercalcemia in malignancy

Primary Hyperparathyroidism
• Urinary calcium usually high or normal
• ↑ PTH → ↑ Ca urinary reabsorption → ↑ serum Ca
• ↑ serum Ca → ↑ urinary calcium

Primary Hyperparathyroidism
• Causes hypercalcemia
 • ↑ renal reabsorption of Ca
 • ↑ vitamin D activation
 • ↑ bone resorption (loss of cortical bone)
 • Phosphaturia

↑PTH ↑Ca

Primary Hyperparathyroidism
• "Stones, bones, groans, and psychiatric overtones"
 • Largely historical
 • Modern era, most patients diagnosed early
 • Often asymptomatic; diagnosis by routine blood work
 • Recurrent kidney stones is common presentation
 • Other signs/symptoms more often seen malignancy

Primary Hyperparathyroidism
• Causes hypercalcemia
 • ↑ renal reabsorption of Ca
 • ↑ vitamin D activation
 • ↑ bone resorption (loss of cortical bone)
 • Phosphaturia

↑PTH ↑Ca

Primary Hyperparathyroidism
• Inappropriate secretion of PTH
• Not due to low calcium
• Commonly caused by parathyroid adenoma

Hyperparathyroidism
• Primary (overactive glands)
• Secondary (hypocalcemia)
• Tertiary (seen in renal failure)

PTHrP
Parathyroid hormone-related protein
• Produced in many tissues
• Numerous normal effects
• Synthesized in large amounts by some tumors
 • Renal cell carcinoma
 • Squamous cell lung cancer
• Leads to hypercalcemia in malignancy

Primary Hyperparathyroidism
• Urinary calcium usually high or normal
• ↑ PTH → ↑ Ca urinary reabsorption → ↑ serum Ca
• ↑ serum Ca → ↑ urinary calcium

Primary Hyperparathyroidism
• Causes hypercalcemia
 • ↑ renal reabsorption of Ca
 • ↑ vitamin D activation
 • ↑ bone resorption (loss of cortical bone)
 • Phosphaturia
Primary Hyperparathyroidism
Symptoms

- Stones (kidney)
 - High Ca in urine can cause stones
- Dehydration
 - Calcium blunts effects of ADH (nephrogenic DI)
 - Polyuria and polydipsia
 - Can lead to renal failure

- Groans (abdominal pain)
 - Constipation, anorexia, nausea
 - Increased stomach acid production (unclear mechanism)
 - Recurrent peptic ulcers
 - Psychiatric overtones
 - Anxiety, altered mental status

- Bones (bone pain)

Primary Hyperparathyroidism

- Adverse effects on bones of long-standing high PTH

- Groans (abdominal pain)
 - Constipation, anorexia, nausea
 - Increased stomach acid production (unclear mechanism)
 - Recurrent peptic ulcers
 - Psychiatric overtones
 - Anxiety, altered mental status

- Stones (kidney)
 - High Ca in urine can cause stones
 - Dehydration
 - Calcium blunts effects of ADH (nephrogenic DI)
 - Polyuria and polydipsia
 - Can lead to renal failure

Osteitis Fibrosa Cystica

- Classic bone disease of hyperparathyroidism
- Clinical features: Bone pain and fractures

- Subperiosteal bone resorption
 - Commonly seen in bones of fingers
 - Irregular or indented edges to bones
- Brown tumors (osteoclastoma)
 - Collections of giant osteoclasts in bone
 - Mixed with stromal cells and matrix proteins
 - Appear as black spaces in bone on x ray

Osteitis Fibrosa Cystica

- Parathyroidectomy
 - Removal of gland with adenoma
 - Pre-op nuclear imaging often done to identify location
 - Risks of recurrent laryngeal nerve damage
 - May result in hoarseness
 - Post-op hypocalcemia
 - Remaining parathyroid glands may be suppressed
 - Numbness or tingling in fingertips, toes, hands
 - If severe: twitching or cramping of muscles

Primary Hyperparathyroidism

- Post-op hypocalcemia
 - Remaining parathyroid glands may be suppressed
 - Numbness or tingling in fingertips, toes, hands
 - If severe: twitching or cramping of muscles
2o Hyperparathyroidism

- Occurs in renal failure patients
- Chronically low serum calcium \rightarrow ↑PTH
- No symptoms of hypercalcemia
- Results in \textit{renal osteodystrophy}
 - Bone pain (predominant symptom)
 - Fractures (weak bones $2o$ chronic high PTH levels)
 - If severe, untreated can lead to osteitis fibrosa cystica

↑PTH \hspace{1cm} ↓Ca

3o Hyperparathyroidism

- Consequence of chronic renal failure
- Chronically low calcium \rightarrow chronically ↑PTH
- Parathyroid becomes autonomous
- VERY high PTH levels
- Calcium may become elevated
- Often requires parathyroidectomy

↑PTH \hspace{1cm} ↓Ca

Calcium-Phosphate in Renal Failure

Sick Kidneys

↑Phosphate

1,25-OH\textsubscript{2} Vitamin D

↓Ca from gut

↓Ca from plasma

Hypocalcemia

↑PTH

FHH

Familial Hypocalciuric Hypercalcemia

- Rare, autosomal dominant disorder
- \textbf{Abnormal calcium sensing}
 - Abnormal calcium sensing receptors (CaSRs)
 - G-protein membrane receptors
 - Found in parathyroid and also kidneys
- Higher than normal set point for calcium
 - Normal PTH \rightarrow ↑calcium
- More renal resorption of calcium
 - Low urinary calcium

↑PTH \hspace{1cm} ↓Ca

FHH

Familial Hypocalciuric Hypercalcemia

- Findings:
 - Usually normal PTH
 - Mildly elevated serum calcium
 - \textbf{Low urinary calcium} (key finding!)
 - May looks like 1o hyperparathyroidism
 - Real world distinction from 1o disease difficult
 - Genetic testing available
 - Usually does not require treatment

Hypoparathyroidism

- Inappropriately low PTH secretion
- Not due to hypercalcemia
- Causes \textbf{hypocalcemia}

↑PTH \hspace{1cm} ↓Ca
Pseudohypoparathyroidism
• Group of disorders
• Kidney and bone unresponsiveness to PTH
• Abnormal PTH receptor function
• Many cases due to impaired G protein signaling
• Usually presents in childhood
• Hypocalcemia, hyperphosphatemia
• Elevated PTH (appropriate)

↑PTH ↓Ca

Thymic Aplasia
DiGeorge Syndrome
• Immunodeficiency syndrome
• Failure of 3rd/4th pharyngeal pouch to form
• Classic triad:
 • Loss of thymus (Loss of T-cells, recurrent infections)
 • Loss of parathyroid glands (hypocalcemia, tetany)
 • Congenital heart defects
• Presents in infancy/childhood with:
 • Hypocalcemia (hypoparathyroidism)
 • Recurrent infections
 • Congenital heart defects

APS-I
Autoimmune Polyendocrine Syndrome Type 1
• Rare autosomal recessive disorder
• Mutations of autoimmune regulator (AIRE) gene
• AIRE also associated with chronic mucocutaneous candidiasis
• Triad:
 • Mucocutaneous candidiasis
 • Autoimmune hypoparathyroidism
 • Addison’s disease

Hypoparathyroidism
Treatment
• Calcium and calcitriol (vitamin D3)
• Recombinant human PTH available

Hypocalcemia
Signs/Symptoms
• Neuromuscular irritability
 • Nerves: tingling of fingers, toes, around mouth
 • Muscles: intermittent spasms (tetany)
• Tetany
 • Trousseau’s sign: Hand spasm with BP cuff inflation
 • Chvostek’s sign: Facial contraction with tapping on nerve
• Seizures

Hypocalcemia
Signs/Symptoms
• Neuromuscular irritability
 • Nerves: tingling of fingers, toes, around mouth
 • Muscles: intermittent spasms (tetany)
• Tetany
 • Trousseau’s sign: Hand spasm with BP cuff inflation
 • Chvostek’s sign: Facial contraction with tapping on nerve
• Seizures

Hypoparathyroidism
Causes
• Surgical excision
 • Often accidental after thyroid or neck surgery
• Key findings: post-op tingling, spasms
• Systemic diseases
 • Hemochromatosis (iron)
 • Wilson’s (copper)
 • Metastatic cancer
Calcium and PTH

- 1st look at calcium: Low/High
- Next, look at PTH: Low/High
- Same direction = parathyroid problem
 - Both ↑: Hyperparathyroidism
 - Both ↓: Hypoparathyroidism
- Opposite direction
 - Normal response to calcium problem
 - Renal failure (low serum calcium – 2nd hyperparathyroidism)
 - Renal losses (pseudohypoparathyroidism)

AHO
Albright’s Hereditary Osteodystrophy
- Form of pseudohypoparathyroidism
- Autosomal dominant
- Hypocalcemia, hyperphosphatemia, ↑ PTH
- Collection of clinical features
 - Short stature
 - Shortened fourth and fifth metacarpals
 - Rounded facies
MEN Syndromes

MEN 1

- 3 P’s
 - Pituitary adenoma
 - Parathyroid adenoma
 - Pancreatic tumors

- Autosomal dominant
- Germline mutation of MEN1 gene (11q13)
- Codes for the protein menin
- Tumor suppressor
- Classic example of 2 hit hypothesis
- Patients born with 1 abnormal MEN 1 gene
- Second “hit” occurs in endocrine glands

MEN 1

- Pituitary adenoma
- Occurs in up to 70% of patients
- Most commonly a prolactinoma
- 2nd most common: GH secreting adenoma
- Pituitary adenomas not seen in other MEN syndromes
- Pituitary disease = MEN 1

MEN Syndromes

Multiple Endocrine Neoplasia

- Group of rare genetic disorders
- All autosomal dominant
- Germline mutations in genes
- Lead to tumors in multiple endocrine glands
- MEN 1, 2A, 2B

MEN Syndromes

Jason Ryan, MD, MPH

MEN Syndromes

Multiple Endocrine Neoplasia

- Group of rare genetic disorders
- All autosomal dominant
- Germline mutations in genes
- Lead to tumors in multiple endocrine glands
- MEN 1, 2A, 2B
MEN 2A and 2B

- Medullary tumors
 - Medullary thyroid carcinoma
 - Pheochromocytoma (adrenal medulla)

MEN 2A and 2B

- MEN 2A
 - Medullary plus parathyroid
 - No physical findings
- MEN 2B
 - Medullary plus M's
 - Two key "phenotype" findings
 - Mucosal neuromas
 - Marfanoid appearance
 - Usually no parathyroid involvement

Medullary Carcinoma

- Cancer of parafollicular cells (C cells)
- Produces calcitonin
 - Lowers serum calcium
 - Normally minimal effect on calcium levels
 - With malignancy → hypocalcemia

MEN 2A and 2B

- MTC occurs earlier than sporadic cases
 - Sporadic: 60s
 - MEN: 30s
 - ~100% risk of MTC
 - Pheochromocytoma usually occurs after MTC

MEN 2B

- Same as 2A except:
 - Usually no parathyroid involvement
 - Two key physical findings
 - #1: Mucosal neuromas
 - Lips, tongue
 - #2: Marfanoid body habitus
MEN Syndromes

- Pituitary adenoma = MEN 1
- MTC or pheochromocytoma = MEN 2
- Parathyroid = MEN 1 or MEN 2A

MEN 2B Neuromas

- Benign growth of nerve tissue
- Often lips and tongue
- Sometimes intestinal neuromas

MEN 2B: Marfanoid

- Tall
- Long wing span
- High arched palate
- Skeletal deformations of spine:
 - Kyphoscoliosis: Curve to left/right
 - Lordosis: Curve forward
- No lens or aortic involvement (like Marfan's)

MEN 2A and 2B

- Autosomal dominant disorders
- Germline mutations in RET (chromosome 10)
- Proto-oncogene
- Codes for a receptor tyrosine kinase
- Important for cell growth/differentiation
- Gain of function mutations in MEN 2
 - Contrast with Hirschsprung disease of colon
 - Associated with loss of function mutations in RET

Thyroidectomy

- Often done prophylactically in MEN2 syndromes
- Usually at a young age (<5 years old)

MEN 2B:

- Marfanoid
 - Tall
 - Long wing span
 - High arched palate
 - Skeletal deformations of spine:
 - Kyphoscoliosis: Curve to left/right
 - Lordosis: Curve forward
 - No lens or aortic involvement (like Marfan's)

MEN 2B Neuromas

- Benign growth of nerve tissue
- Often lips and tongue
- Sometimes intestinal neuromas
Intracellular Hormones
- Receptor in cytoplasm/nucleus
 - Progesterone
 - Estrogen
 - Testosterone
 - Cortisol
 - Aldosterone
 - Thyroid hormone

Steroid Hormones
- Estradiol (17β-estradiol)
- Testosterone
- Progesterone
- Aldosterone
- Cortisol
- Cholesterol

Thyroid Hormones
- Two hormones: T3 and T4
- Synthesized from tyrosine and iodine
- Triiodothyronine (T3)
- Thyroxine (T4)

Hormone Effects
- Hormone → Cell → Effects

Intracellular Hormones
- All circulate bound to a protein
 - Estrogen/testosterone: sex binding globulin (SBG)
 - Thyroid hormone: thyroid binding globulin (TBG)
 - Cortisol: corticosteroid-binding globulin (CBG)
 - Aldosterone
 - Progesterone

Signaling Pathways
Jason Ryan, MD, MPH
JAK2 Mutation

- Associated with myeloproliferative disorders
- Gene for cytoplasmic tyrosine kinase
- Mutation → ↑ tyrosine phosphorylation
- Progenitor cells: hypersensitivity to cytokines
- More growth; longer survival

Receptor Tyrosine Kinase

- Many cytokines
 - IFN-γ, IL-2, IL-6
 - G-CSF (granulocyte-colony stimulating factor)
 - Thrombopoietin
 - Others
 - Prolactin
 - Growth hormone
Cyclic AMP

- Hormone
- adenyl cyclase
- Adenosine Triphosphate
- Cyclic Adenosine Monophosphate

G-Protein Linked Receptors

- Bind guanosine nucleotides (GDP, GTP)
- Transmit signals

Pituitary Hormones

- All have a cAMP second messenger system
- α-subunit
- FSH β
- LH β
- TSH β
- HCG β
- ATP
- cAMP
- Effects

MSH

- Melanocyte Stimulating Hormone
- Causes hyperpigmentation in Cushing’s disease
- Proopiomelanocortin: Precursor of ACTH
- Also precursor of MSH (α/β/γ)
- MSH: Stimulates melanocytes to produce melanin

Cyclic GMP

- Hormone
- Guanylate Cyclase
- Guanosine Triphosphate
- Cyclic Guanosine Monophosphate
G-Protein Linked Receptors

- Hypothalamus
 - GnRH, TRH
- Posterior Pituitary
 - Oxytocin
 - ADH (V1 receptor - vasoconstriction)
- Others
 - Histamine (H1-receptor – skin/lungs)
 - Angiotensin II
 - Gastrin

Cyclic GMP

- BNP/ANP
 - Release by cardiac myocytes
 - Antagonize RAAS system
 - Both bind natriuretic peptide receptors (NPR)
 - Vasodilation/diuresis
- Nitric oxide
 - Endothelium-derived relaxing factor (EDRF)
 - Synthesized by endothelial cells
 - Activates cGMP → smooth muscle relaxation/vasodilation
- All are vasodilators

Inositol Triphosphate (IP3)

- BNP/ANP
 - Release by cardiac myocytes
 - Antagonize RAAS system
 - Both bind natriuretic peptide receptors (NPR)
 - Vasodilation/diuresis
- Lipid
 - Hormone?
- YES
- NO
- Vasodilator?
 - (BNP/ANP/EDRF)
- NO
- Insulin/Growth factor?
- NO
- Cytokine/Bone marrow?
- NO
- Prolactin/Growth hormone?
 - Intracellular
 - YES
 - cGMP
 - Tyrosine Kinase
 - JAK/STAT
 - cAMP/IP3

Hypothalamus

<table>
<thead>
<tr>
<th>Hypothalamus</th>
<th>2nd Messenger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corticotropin-releasing hormone (CRH)</td>
<td>cAMP</td>
</tr>
<tr>
<td>Thyrotropin-releasing hormone (TRH)</td>
<td>IP3</td>
</tr>
<tr>
<td>Gonadotropin-releasing hormone (GnRH)</td>
<td>IP3</td>
</tr>
<tr>
<td>Growth hormone-releasing hormone (GHRH)</td>
<td>cAMP</td>
</tr>
</tbody>
</table>

Inositol Triphosphate

- Hypothalamus
 - GnRH, TRH
- Posterior Pituitary
 - Oxytocin
 - ADH (V1 receptor - vasoconstriction)
- Others
 - Histamine (H1-receptor – skin/lungs)
 - Angiotensin II
 - Gastrin
Anterior Pituitary

<table>
<thead>
<tr>
<th>Hormone</th>
<th>2nd Messenger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adrenocorticotropic hormone (ACTH)</td>
<td>cAMP</td>
</tr>
<tr>
<td>Thyroid-stimulating hormone (TSH)</td>
<td>cAMP</td>
</tr>
<tr>
<td>Luteinizing hormone (LH)</td>
<td>cAMP</td>
</tr>
<tr>
<td>Follicle-stimulating hormone (FSH)</td>
<td>cAMP</td>
</tr>
<tr>
<td>Growth hormone (GH)</td>
<td>JAK/STAT</td>
</tr>
<tr>
<td>Prolactin</td>
<td>JAK/STAT</td>
</tr>
</tbody>
</table>

Others

- IP3
- ADH (V1 receptor)
- Histamine (H1 receptor)
- Gastrin
- Angiotensin II
- cAMP
- Histamine (H2 receptor)
- ADH (V2 receptor)